
AtomVM documentation
Release 0.6.6+git.db7fa169

github.com/atomvm

June 17, 2025

Table of Contents

1 Welcome to AtomVM! 2
1.1 What is AtomVM? . 2
1.2 Why Erlang/Elixir? . 2
1.3 Design Philosophy . 3
1.4 Licensing . 3
1.5 Source Code . 3
1.6 Contributing . 3
1.7 Where to go from here . 4

2 Release Notes 5
2.1 Required Software . 5

3 Getting Started Guide 8
3.1 Getting Started on the ESP32 platform . 8
3.2 Getting Started on the STM32 platform . 11
3.3 Getting Started on the Raspberry Pi Pico platform . 13
3.4 Getting Started on the Generic UNIX platform . 15
3.5 Getting Started with AtomVM WebAssembly . 18
3.6 Where to go from here . 19

4 AtomVM Tooling 20
4.1 atomvm_rebar3_plugin . 20
4.2 ExAtomVM . 24
4.3 atomvm_packbeam . 27
4.4 Where to go from here . 30

5 Programmers Guide 31
5.1 AtomVM Features . 31
5.2 AtomVM Development . 32
5.3 Applications . 35
5.4 Core APIs . 37
5.5 ESP32-specific APIs . 50
5.6 Peripherals . 55
5.7 Protocols . 64
5.8 Socket Programming . 69
5.9 Where to go from here . 75

6 Network Programming Guide 76
6.1 Station (STA) mode . 76
6.2 AP mode . 78
6.3 STA+AP mode . 80

 i

6.4 SNTP Support . 80
6.5 NVS Credentials . 81
6.6 Stopping the Network . 81

7 Build Instructions 82
7.1 Downloading AtomVM . 82
7.2 Source code organization . 83
7.3 Platform Specific Build Instructions . 83
7.4 Building for Generic UNIX . 83
7.5 Building for ESP32 . 85
7.6 Building for STM32 . 93
7.7 Building for Raspberry Pi Pico . 95
7.8 Building for emscripten . 96

8 AtomVM Internals 99
8.1 What is an Abstract Machine? . 99
8.2 AtomVM Data Structures . 100
8.3 The Scheduler . 101
8.4 Tasks and synchronization mechanisms . 101
8.5 Mailboxes and signals . 102
8.6 Stacktraces . 102
8.7 AtomVM WebAssembly port . 104

9 Memory Management 106
9.1 The Context structure . 106
9.2 Simple Terms . 109
9.3 Boxed terms . 111
9.4 Lists . 116
9.5 Special Stack Types . 118
9.6 Garbage Collection . 118

10 Packbeam Format 124
10.1 Overview . 124
10.2 Packbeam Header . 124
10.3 File encodings . 124

11 API Reference Documentation 127
11.1 Erlang Libraries . 127
11.2 AtomVM ‘C’ APIs . 233

12 Contributing 234
12.1 Git Recommended Practices . 234
12.2 Coding Style . 234

13 Changelog 238
13.1 [0.6.6] - Unreleased . 238
13.2 [0.6.5] - 2024-10-15 . 240
13.3 [0.6.4] - 2024-08-18 . 241
13.4 [0.6.3] - 2024-07-20 . 242
13.5 [0.6.2] - 25-05-2024 . 243
13.6 [0.6.1] - 2024-04-17 . 243
13.7 [0.6.0] - 2024-03-05 . 244
13.8 [0.6.0-rc.0] - 2024-03-03 . 244
13.9 [0.6.0-beta.1] - 2024-02-28 . 244
13.10 [0.6.0-beta.0] - 2024-02-08 . 245
13.11 [0.6.0-alpha.2] - 2023-12-10 . 246
13.12 [0.6.0-alpha.1] - 2023-10-09 . 247

ii

13.13 [0.6.0-alpha.0] - 2023-08-13 . 248
13.14 [0.5.1] - Unreleased . 250
13.15 [0.5.0] - 2022-03-22 . 251

14 Contributor Covenant Code of Conduct 252
14.1 Our Pledge . 252
14.2 Our Standards . 252
14.3 Enforcement Responsibilities . 252
14.4 Scope . 252
14.5 Enforcement . 253
14.6 Enforcement Guidelines . 253
14.7 Attribution . 253

15 Security Policy 255
15.1 Supported Versions . 255
15.2 Reporting a Vulnerability . 255

16 AtomVM Update Instructions 256
16.1 v0.6.4 -> v0.6.5 . 256
16.2 v0.6.0-beta.1 -> v0.6.0-rc.0 . 256
16.3 v0.6.0-alpha.2 -> v0.6.0-beta.0 . 256
16.4 v0.6.0-alpha.0 -> v0.6.0-alpha.1 . 256

 iii

Welcome to AtomVM, the Erlang virtual machine for IoT devices!
AtomVM is a lightweight implementation of the the Bogdan Erlang Abstract Machine (_aka_,
the BEAM), a virtual machine that can execute byte-code instructions compiled from Erlang or Elixir
source code. AtomVM supports a limited but functional subset of the BEAM opcodes, and also
includes a small subset of the Erlang/OTP standard libraries, all optimized to run on tiny micro-con-
trollers. With AtomVM, you can write your IoT applications in a functional programming language,
using a modern actor-based concurrency model, making them vastly easier to write and understand!
AtomVM includes many advanced features, including process spawning, monitoring, message pass-
ing, pre-emptive scheduling, and efficient garbage collection. It can also interface directly with
peripherals and protocols supported on micro-controllers, such as GPIO, I2C, SPI, and UART. It also
supports WiFi networking on devices that support it, such as the Espressif ESP32. All of this on
a device that can cost as little as $2!

Warning AtomVM is currently in v0.x stage. Software may contain bugs and should not be used
for mission-critical applications. Application Programming Interfaces may change without warn-
ing.

 1

https://semver.org/#spec-item-4

1 Welcome to AtomVM!

Welcome to AtomVM, the Erlang virtual machine for IoT devices!

1.1 What is AtomVM?

AtomVM is a ground-up implementation of the Bogdan Erlang Abstract Machine (a.k.a the BEAM)
and is designed specifically to run on small systems, such as the Espressif ESP32 and ST Microelec-
tronics STM32 micro-controllers. It allows developers to implement IoT applications in the Erlang or
Elixir programming languages and to deploy those applications onto tiny devices. (Users may also
target their applications for fully-fledged operating systems, such as Linux, FreeBSD, and MacOS,
though in most cases deployment to traditional computers is done for development and testing
purposes, only.)
AtomVM features include:

• An Erlang runtime, capable of executing bytecode instructions in compiled BEAM files;
• Support for all the major Erlang and Elixir types, including integers, strings, lists, maps, binaries,

Enums, and more;
• A memory-managed environment, with efficient garbage collection and shared data, where

permissible;
• Support for truly functional programming languages, making your programs easier to under-

stand and debug;
• A concurrency-oriented platform, allowing users to spawn, monitor, and communicate with

lightweight processes, making it easy for your IoT devices to perform tasks simultaneously;
• Support for symmetric multi-processing (SMP); leverage all available cores on platforms that

support it (e.g., ESP32) without any code changes;
• A rich set of networking APIs, for writing robust IoT applications that communicate over IP

networks;
• A rich set of APIs for interfacing with standard device protocols, such as GPIO, I2C, SPI, and

UART;
• And more!

1.2 Why Erlang/Elixir?

The environments on which AtomVM applications are deployed are significantly more constrained
than typical programming environments. For example, the typical ESP32 ships with 520K of RAM
and 4MB of flash storage, roughly the specs of a mid 1980s desktop computer. Moreover, most
micro-controller environments do not support native POSIX APIs for interfacing with an operating
system, and in many cases, common operating system abstractions, such as processes, threads, or
files, are simply unavailable.
However, because the BEAM is provides a pre-emptive multitasking environment for your applica-
tions, many of the common operating system abstractions, particularly involving threading and
concurrency, are simply not needed. As concurrently-oriented languages, Erlang and Elixir support
lightweight “processes”, with message passing as the mechanism for inter-(erlang)process communi-
cation, pre-emptive multi-tasking, and per-process heap allocation and garbage collection.
In many ways, the programming model for Erlang and Elixir is closer to that of an operating system
and multiple concurrent processes running on it, where operating system processes are single execu-

AtomVM documentation, Release 0.6.6+git.db7fa169

2 Chapter 1. Welcome to AtomVM!

https://en.wikipedia.org/wiki/BEAM_(Erlang_virtual_machine)
https://www.espressif.com
https://www.espressif.com/en/products/socs/esp32
https://www.st.com/content/st_com/en.html
https://www.st.com/content/st_com/en.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html

tion units, communicate through message passing (signals), and don’t share any state with one
another. Contrast that with most popular programming languages today (C, C++, Java, Python, etc),
which use threading abstractions to achieve concurrency within a single memory space, and which
subsequently require close attention to cases in which multiple CPUs operate on a shared region of
memory, requiring threads, locks, semaphores, and so forth.
As an implementation of the BEAM, AtomVM provides a modern, memory managed, and concurren-
cy-oriented environment for developing applications on small devices. This makes writing concur-
rent code for micro-controllers (e.g., and application that reads sensor data, services HTTP requests,
and updates the system clock, all at the same time) incredibly simple and natural – far easier writing
programs that use concurrency than C, C++, or even, for example, Micropython.
In addition, because it is targeted for micro-controller environments, AtomVM provides interfaces for
integrating with features commonly seen on micro-controllers, such as GPIO pins, analog-to-digital
conversion, and common industry peripheral interfaces, such as I2C, SPI, and UART, making
AtomVM a rich platform for developing IoT applications.
Finally, one of the exciting aspects about modern micro-controllers, such as the ESP32, is their integra-
tion with modern networking technologies, such as WiFi and Bluetooth. AtomVM leverages Erlang
and Elixir’s natural affinity with telecommunications technologies to open up further possibilities for
developing networked and wireless IoT devices.
We think you will agree that AtomVM provides a compelling environment not only for Erlang and
Elixir development, but also as a home for interesting and fun IoT projects.

1.3 Design Philosophy

AtomVM is designed from the start to run on small, cheap embedded devices, where system
resources (memory, cpu, storage) are tightly constrained. The smallest environment in which
AtomVM runs has around 512k of addressable RAM, some of which is used by the underlying
runtime (FreeRTOS), and some of which is used by the AtomVM virtual machine, itself, leaving even
less RAM for your own applications. Where there is a tradeoff between memory consumption and
performance, minimizing memory consumption (and heap fragmentation) always wins.
From the developer’s point of view, AtomVM is designed to make use of the existing tool chain from
the Erlang and Elixir ecosystems. This includes the Erlang and Elixir compilers, which will compile
Erlang and Elixir source code to BEAM bytecode. Where possible, AtomVM makes use of existing
tool chains to reduce the amount of unnecessary features in AtomVM, thus reducing complexity, as
well as the amount of system resources in use by the runtime. AtomVM is designed to be as small
and lean as possible, providing as many resources to user applications, as possible.

1.4 Licensing

AtomVM is licensed under the terms of the Apache2 and LGPLv2 licenses.

1.5 Source Code

The AtomVM Github Repository contains the AtomVM source code, including the AtomVM virtual
machine and core libraries. The AtomVM Build Instructions contains instructions for building
AtomVM for Generic UNIX, ESP32, and STM32 platforms.

1.6 Contributing

The AtomVM community welcomes contributions to the AtomVM code base and upstream and

 AtomVM documentation, Release 0.6.6+git.db7fa169

1.3. Design Philosophy 3

https://www.apache.org/licenses/LICENSE-2.0
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
https://github.com/atomvm/AtomVM

downstream projects. Please see the contributing guidelines for information about how to contribute.
AtomVM developers can be reached on the #AtomVM discord server (rarely used) or on Telegram at
AtomVM - Erlang and Elixir on Microcontrollers (this is where we are most active).

1.7 Where to go from here

The following guides provide more detailed information about getting started with the AtomVM
virtual machine, how to develop and deploy applications, and implementation information, for
anyone interested in getting more involved:

• Getting Started Guide
• Programmers Guide
• Example Programs
• Build Instructions

AtomVM documentation, Release 0.6.6+git.db7fa169

4 Chapter 1. Welcome to AtomVM!

https://t.me/atomvm
https://github.com/atomvm/atomvm_examples

Chapter 2

Release Notes

Welcome to AtomVM 0.6.6+git.db7fa169
These release notes provide version information about the current release of AtomVM.

See also

For a detailed list of changes since the last release consult the Changelog.

2.1 Required Software

The following software is required to develop Erlang or Elixir applications on AtomVM:
• An Erlang/OTP compiler (erlc)
• The Elixir runtime, if developing Elixir applications.
• (recommended) For Erlang programs, rebar3
• (recommended) For Elixir programs, mix, which ships with the Elixir runtime.

AtomVM will run BEAM files that have been compiled using the following Erlang and Elixir versions:
Erlang Version Elixir Version? ?? ?? ?? ?? ?? ?? ?

Note Versions of Elixir that are compatible with a particular OTP version may work. This table
reflects the versions that are tested.

Not all BEAM instructions are supported for every Erlang and Elixir compiler. For details about
which instructions are supported, see the src/libAtomVM/opcodes.h header file in the AtomVM
github repository corresponding to the current release.
For detailed information about features and bug fixes in the current release, see the AtomVM Change
Log. For information about how to update from previous versions of AtomVM, see the AtomVM
Updating page.

 5

https://erlang.org
https://elixir-lang.org
https://rebar3.org
https://elixir-lang.org/getting-started/mix-otp/introduction-to-mix.html
https://github.com/atomvm/AtomVM/

2.1.1 ESP32 Support

AtomVM supports deployment on the Espressif ESP32 family of architectures.
To run applications built for AtomVM on the ESP32 platform you will need:

• The esptool program, for flashing the AtomVM image and AtomVM programs to ESP32
MCUs.

• A serial console program, such as minicom or screen, so that you can view console output
from your AtomVM application.

AtomVM currently supports the following Espressif ESP SoCs:
Espressif SoCs AtomVM support

ESP32 ?
ESP32c2 ?
ESP32c3 ?
ESP32c6 ?
ESP32h2 ?
ESP32s2 ?
ESP32s3 ?
ESP32p4 Datasheet Pending ?

AtomVM currently supports the following versions of ESP-IDF:
IDF SDK supported versions AtomVM support
ESP-IDF v5.0 ?
ESP-IDF v5.1 ?
ESP-IDF v5.2 ?
ESP-IDF v5.3 ?
ESP-IDF v5.4 ?

Building the AtomVM virtual machine for ESP32 is optional. In most cases, you can simply download
a release image from the AtomVM release repository. If you wish to work on development of the VM
or use one on the additional drivers that are available in the AtomVM repositories you will to build
AtomVM from source. See the Build Instructions for information about how to build AtomVM from
source code. We recommend you to use the latest subminor (patch) versions for source builds. You
can check the current version used for testing in the esp32-build.yaml workflow.

2.1.2 STM32 Support

AtomVM supports deployment on the STMicroelectronics STM32 architecture.
AtomVM has been tested on the following development boards:

STM32 Development Boards AtomVM support
Nucleo-F429ZI ?
STM32F4Discovery ?
BlackPill V2.0 ?

Due to the proliferation of boards for the STMicroelectronics STM32 platform, AtomVM does not
currently support pre-build binaries for STM32. In order to deploy AtomVM to the STM32 platform,
you will need to build AtomVM for STM32 from source. See the Build Instructions for information
about how to build AtomVM from source code.

Note AtomVM tests this build on the latest Ubuntu github runner.

AtomVM documentation, Release 0.6.6+git.db7fa169

6 Chapter 2. Release Notes

https://www.espressif.com/en/products/socs
https://github.com/espressif/esptool
https://www.espressif.com/en/products/socs
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c2_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c6_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-h2_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s2_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s3_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-p4_datasheet_en.pdf
https://docs.espressif.com/projects/esp-idf/en/v5.0.7/esp32/get-started/index.html
https://docs.espressif.com/projects/esp-idf/en/v5.1.5/esp32/get-started/index.html
https://docs.espressif.com/projects/esp-idf/en/v5.2.3/esp32/get-started/index.html
https://docs.espressif.com/projects/esp-idf/en/v5.3.2/esp32/get-started/index.html
https://docs.espressif.com/projects/esp-idf/en/v5.4/esp32/get-started/index.html
https://github.com/atomvm/AtomVM/releases
https://github.com/atomvm
https://github.com/atomvm/AtomVM/actions/workflows/esp32-build.yaml
https://www.st.com
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/en/evaluation-tools/nucleo-f429zi.html
https://www.st.com/en/evaluation-tools/stm32f4discovery.html
https://stm32-base.org/boards/STM32F411CEU6-WeAct-Black-Pill-V2.0
https://www.st.com
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html

2.1.3 Raspberry Pi Pico Support

AtomVM supports deployment on the Raspberry Pico RP2040 architecture.
AtomVM currently supports the following Raspberry Pico development boards:

Development Board AtomVM support
Raspberry Pico and Pico H ?
Raspberry Pico W and Pico WH ?

Building the AtomVM virtual machine for Raspberry Pico is optional. In most cases, you can simply
download a release image from the AtomVM release repository. If you wish to work on development
of the VM or use one on the additional drivers that are available in the AtomVM repositories you will
to build AtomVM from source. See the Build Instructions for information about how to build
AtomVM from source code.

 AtomVM documentation, Release 0.6.6+git.db7fa169

2.1. Required Software 7

https://www.raspberrypi.com/documentation/microcontrollers/pico-series.html#pico-1-family
https://www.raspberrypi.com/documentation/microcontrollers/pico-series.html#pico-1-technical-specification
https://www.raspberrypi.com/documentation/microcontrollers/pico-series.html#picow-technical-specification
https://github.com/atomvm/AtomVM/releases
https://github.com/atomvm

3 Getting Started Guide

Welcome to the AtomVM Getting Started Guide. This document is intended to get you started so that
you can run Erlang or Elixir programs on the AtomVM platform as quickly as possible.
In order to do so, you will need to provision your device (depending on the device type) with
the AtomVM virtual machine. Typically, you only need to do this once (or at least once per release of
the VM you would like to use). Once the VM is provisioned on the device, you can then deploy your
application onto the device, and we expect this process to your typical “deploy, test, debug” develop-
ment lifecycle. The subsequent chapter on AtomVM Tooling will help you understand that process.
The getting started is broken up into the following sections:

• Getting Started on the ESP32 platform
• Getting Started on the STM32 platform
• Getting Started on the Raspberry Pi Pico platform
• Getting Started on the Generic UNIX platform
• Getting Started with AtomVM WebAssembly

Please use the appropriate section for the device type you intend to use.

3.1 Getting Started on the ESP32 platform

The AtomVM virtual machine is supported on the Espressif ESP32 platform, allowing users to write
Erlang and Elixir programs and deploy them to the ESP32 micro-controller. For specific information
about which ESP32 boards and chip-sets are supported, please refer to the AtomVM Release Notes.
These instructions cover how to provision the AtomVM virtual machine flashed to your ESP32 device.
For most applications, you should only need to install the VM once (or at least once per desired
AtomVM release). Once the VM is uploaded, you can then begin development of Erlang or Elixir
applications, which can then be flashed as part of your routine development cycle.

3.1.1 ESP32 Requirements

Deployment of AtomVM on the ESP32 platform requires the following components:
• A computer running MacOS or Linux (Windows support is not currently supported);
• An ESP32 (including ESP32-S2, ESP32-S3, ESP32-C2, ESP32-C3, ESP32-C6, ESP32-H2) module

with a USB/UART connector (typically part of an ESP32 development board);
• A USB cable capable of connecting the ESP32 module or board to your development machine

(laptop or PC);
• The esptool program, for flashing the AtomVM image and AtomVM programs;
• An Erlang/OTP;
• A serial console program, such as minicom or screen, so that you can view console output

from your AtomVM application.
• (recommended) For Erlang programs, rebar3;
• (recommended) For Elixir programs, mix, which ships with the Elixir runtime;

AtomVM documentation, Release 0.6.6+git.db7fa169

8 Chapter 3. Getting Started Guide

https://www.espressif.com
https://www.espressif.com/en/products/socs/esp32
https://github.com/espressif/esptool
https://erlang.org
https://rebar3.org
https://elixir-lang.org/getting-started/mix-otp/introduction-to-mix.html

See also

For information about specific versions of required software, see the AtomVM Release Notes.

3.1.2 ESP32 Deployment Overview

The ES32 AtomVM virtual machine is an IDF application that runs on the ESP32 platform. As an IDF
application, it provides the object code to boot the ESP device and execute the AtomVM virtual
machine code, which in turn is responsible for execution of an Erlang/Elixir application.
The AtomVM virtual machine is implemented in C, and the AtomVM binary image contains
the binary object code compiled from C source files, as well as the ESP boot loader and partition map,
which tells the ESP32 how the flash module is laid out.
AtomVM developers will typically write their applications in Erlang or Elixir. These source files are
compiled into BEAM bytecode, which is then assembled into AtomVM “packbeam” (.avm) files. This
packbeam file is flashed onto the ESP32 device, starting at the data partition address 0x210000.
When AtomVM starts, it will look in this partition for the first occurrence of a BEAM module that
exports a start/0 function. Once that module is located, execution of the BEAM bytecode will
commence at that point.
The following diagram provides a simplified overview of the layout of the AtomVM virtual machine
and Erlang/Elixir applications on the ESP32 flash module.

| |
+---------------+ ----------- 0x0 | 0x1000 | 0x2000 (varies by esp32 flavor)
| boot loader | ^
+---------------+ |
| partition map | | AtomVM
+---------------+ | binary
| | | image
AtomVM	
Virtual	
Machine	
	v
+---------------+ ----------- 0x210000 for thin images or	
	^ 0x250000 for images with Elixir modules
data	
partition	
	v
+---------------+ ----------- end

Deploying an AtomVM application to an ESP32 device typically involved two steps:
1. Connecting the ESP32 device;
2. Deploying the AtomVM virtual machine;
3. Deploying an AtomVM application (typically an iterative process)

These steps are described in more detail below.

3.1.3 Connecting the ESP32 device

Connect the ESP32 to your development machine (e.g., laptop or PC) via a USB cable.

+---------------+
| laptop or PC |
| | +-------+
| | USB | |
| x-----------x |

 AtomVM documentation, Release 0.6.6+git.db7fa169

3.1. Getting Started on the ESP32 platform 9

| | | |
| | +-------+
+---------------+ ESP32

Important There are a wide variety of ESP32 modules, ranging from home-made breadboard solu-
tions to all-in-one development boards. For simplicity, we assume a development board that can both
be powered by a USB cable and which can be simultaneously flashed using the same cable, e.g.,
the Espressif ESP32 DevKit.

Consult your local development board documentation for instructions about how to connect your
device to your development machine.

3.1.4 Deploying the ESP32 AtomVM virtual machine

The following methods can be used to deploy the AtomVM virtual machine to an ESP32 device:
1. Flashing a binary image;
2. Building from source.

Flashing a binary image to ESP32

Flashing the ESP32 using a pre-built binary image is by far the easiest path to getting started with
development on the ESP32. Binary images contain the virtual machine image and all of the necessary
components to run your application.
We recommend first erasing any existing applications on the ESP32 device. E.g.,

$ esptool.py --chip auto --port /dev/ttyUSB0 --baud 921600 erase_flash

Note Specify the device port and baud settings and AtomVM image name to suit your particular envi-
ronment. A baud rate of 921600 works well for most ESP32 devices, some can work reliably at higher
rates of 1500000, or even 2000000, but some devices (especially those with a 26Mhz crystal frequency,
rather than the more common 40 Mhz crystal) may need to use a slower baud rate such as 115200.

Download the latest release image for ESP32.
This image will generally take the form:

Atomvm-<esp32-soc>-<atomvm-version>.img

For example:
Atomvm-esp32-v0.6.0.img

You will also find the sha256 hash for this file, which you should verify using the sha256sum
command on your local operating system.

Warning Alpha and Beta images may be unstable and may result in unpredictable behavior. You
can help solve these bugs by opening a detailed issue on GitHub, if you encounter such problems.

Finally, use the esptool.py command to flash the image to the bootloader start address 0x1000 on
the ESP32. E.g.,

$ esptool.py \
--chip auto \
--port /dev/ttyUSB0 --baud 921600 \
--before default_reset --after hard_reset \
write_flash -u \
--flash_mode dio --flash_freq 40m --flash_size detect \
0x1000 \

AtomVM documentation, Release 0.6.6+git.db7fa169

10 Chapter 3. Getting Started Guide

https://www.espressif.com/en/products/devkits/esp32-devkitc
https://github.com/atomvm/AtomVM/releases
https://github.com/atomvm/AtomVM/issues

/path/to/Atomvm-esp32-v0.6.0.img

Attention! A baud rate of 921600 works well for most ESP32 devices, some can work reliably at
higher rates of 1500000, or even 2000000, but some devices (especially those with a 26Mhz crystal
frequency, rather than the more common 40 Mhz crystal) may need to use a slower baud rate such
as 115200.

The chart below lists the bootloader offset for the various ESP32 family of chips:
Chipset Bootloader offset

ESP32 0x1000
ESP32-S2 0x1000
ESP32-S3 0x0
ESP32-C2 0x0
ESP32-C3 0x0
ESP32-C6 0x0
ESP32-H2 0x0
ESP32-P4 0x2000

Once completed, your ESP32 device is ready to run Erlang or Elixir programs targeted for AtomVM.
Building for ESP32 from source

You may optionally build AtomVM from source and deploy the AtomVM virtual machine to your
ESP32 device manually. Building AtomVM from source is slightly more involved, as it requires
the installation of the Espressif IDF SDK and tool chain and is typically recommended only for users
who are doing development on the AtomVM virtual machine, or for developers implementing custom
Nifs or ports.
Instructions for building AtomVM from source are covered in the AtomVM Build Instructions

3.1.5 Deploying an AtomVM application for ESP32

An AtomVM application is a collection of BEAM files, which have been compiled using the Erlang or
Elixir compiler. These BEAM files are assembled into an AtomVM “packbeam” (.avm) file, which in
turn is flashed to the main data partition on the ESP32 flash module, starting at address 0x210000 if
you are using a thin image, or 0x250000 for images with Elixir support.
When the AtomVM virtual machine starts, it will search for the first module that contains an exported
start/0 function in this partition, and it will begin execution of the BEAM bytecode at that function.
AtomVM applications can be written in Erlang or Elixir, or a combination of both. The AtomVM
community has provided tooling for both platforms, making deployment of AtomVM applications as
seamless as possible.
For information about how to flash your application to your ESP32, see the AtomVM Tooling chapter.

3.2 Getting Started on the STM32 platform

AtomVM can run on a wide variety of STM32 chip-sets available from STMicroelectronics.
The support is not nearly as mature as for the ESP32 platform, but work is ongoing, and pull requests
are always welcome. At this time AtomVM will work on any board with a minimum of around 128KB
ram and 512KB (1M recommended) flash. Simple applications and tests have been successfully run on
a stm32f411ceu6 (A.K.A. Black Pill V2). These minimum requirements may need to be raised as plat-
form support matures.

 AtomVM documentation, Release 0.6.6+git.db7fa169

3.2. Getting Started on the STM32 platform 11

https://www.st.com

3.2.1 STM32 Requirements

Deployment of AtomVM on the STM32 platform requires the following components:
• A computer running MacOS or Linux (Windows is not currently supported);
• An stm32 board and a USB/UART connector (these are built into some boards such as

the Nucleo product line) and a minimum of 512k (1M recommended) of flash and a recom-
mended minimum of 100k RAM;

• A USB cable capable of connecting the STM32 module or board to your development machine
(laptop or PC);

• st-flash via stlink, to flash both AtomVM and your packed AVM applications. Make sure to
follow its installation procedure before proceeding further.

• A st-link v2 or st-link v3 device (typically already included on Nucleo and Discovery boards), is
needed for flashing and optional jtag debugging.

• A serial console program, such as minicom or screen, so that you can view console output
from your AtomVM application.

• (recommended) For Erlang programs, rebar3;
• (recommended) For Elixir programs, mix, which ships with the Elixir runtime;

3.2.2 Deploying the STM32 AtomVM virtual machine

The following methods can be used to deploy the AtomVM virtual machine to an STM32 device:
1. Building from source.

Attention! Due to the very large number of supported chip-sets and the wide variety of board
configurations, and the code changes required to support them, pre-built binaries for the stm32
platform are not currently available.

Consult the STM32 Build Instructions to create a binary compatible with your board.
Flashing a binary image to STM32

Once you have created an STM32 binary image, you can flash the image to your STM32 device using
the st-flash application.
To flash your image, use the following command:

$ st-flash --reset write AtomVM-stm32f407vgt6.bin 0x8000000

Congratulations! You have now flashed the AtomVM VM image onto your STM32 device!

Important AtomVM expects to find the AVM at the address 0x8080000. On a STM32 Discovery board
this means that the 1MB of flash will be split in 512KB available for the program and 512KB available
for the packed AVM. For devices with only 512KB of flash the application address is 0x8060000,
leaving 128KB of application flash available.

Console Printing

By default, stdout and stderr are printed on USART2. On the STM32F4Discovery board, you can see
them using a TTL-USB with the TX pin connected to board’s pin PA2 (USART2 RX). Baudrate is
115200 and serial transmission is 8N1 with no flow control.
For Nucleo boards the on board USB-COM to USART may be used by configuring your build with
a BOARD parameter, see the STM32 Build Instructions for Configuring the Console.

AtomVM documentation, Release 0.6.6+git.db7fa169

12 Chapter 3. Getting Started Guide

https://github.com/stlink-org/stlink
https://github.com/stlink-org/stlink#installation
https://www.st.com/en/development-tools/st-link-v2.html
https://www.st.com/en/development-tools/stlink-v3set.html
https://rebar3.org
https://elixir-lang.org/getting-started/mix-otp/introduction-to-mix.html

3.2.3 Deploying an AtomVM application for STM32

An AtomVM application is a collection of BEAM files, which have been compiled using the Erlang or
Elixir compiler. These BEAM files are assembled into an AtomVM “packbeam” (.avm) file, which in
turn is flashed to the main data partition on the STM32 flash module, starting at address 0x8080000,
for boards with 512KB of flash the address is 0x8060000.
When the AtomVM virtual machine starts, it will search for the first module that contains an exported
start/0 function in this partition, and it will begin execution of the BEAM bytecode at that function.
AtomVM applications can be written in Erlang or Elixir, or a combination of both. The AtomVM
community has provided tooling for both platforms, making deployment of AtomVM applications as
seamless as possible.
For information about how to flash your application to your STM32, see the AtomVM Tooling chapter.

3.3 Getting Started on the Raspberry Pi Pico platform

AtomVM supports deployment of the VM and applications onto the Raspberry Pi Pico platform. For
information about supported boards, please refer to the AtomVM Release Notes.
The following instructions show you how to install the AtomVM onto one of the Raspberry Pi Pico
boards.

3.3.1 Pico Requirements

Deployment of AtomVM on the Raspberry Pico platform requires the following components:
• A computer running MacOS or Linux (Windows support is not currently supported);
• A Raspberry Pico board with a USB/UART connector (typically part of a development board);
• A USB cable capable of connecting the Raspberry Pico module or board to your development

machine (laptop or PC);
• A serial console program, such as minicom or screen, so that you can view console output

from your AtomVM application.
• (recommended) For Erlang programs, rebar3;
• (recommended) For Elixir programs, mix, which ships with the Elixir runtime;
• (recommended) picotool, useful for resetting the device into BOOTSEL or application

mode, optionally used by the atomvm_rebar3_plugin (if available in env $PATH) for discon-
necting active screen sessions when attempting to flash when still connected.

3.3.2 Deploying the Pico AtomVM virtual machine

The following methods can be used to deploy the AtomVM virtual machine to a Raspberry Pico
device:

1. Flashing a binary image;
2. Building from source.

Flashing a binary image to Pico

Flashing the Raspberry Pico using a pre-built binary image is by far the easiest path to getting started
with development on the Raspberry Pico. Binary images contain the virtual machine image and all of
the necessary components to run your application.
Download the latest release image for Raspberry Pico.
This image will generally take the form:

 AtomVM documentation, Release 0.6.6+git.db7fa169

3.3. Getting Started on the Raspberry Pi Pico platform 13

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://rebar3.org
https://elixir-lang.org/getting-started/mix-otp/introduction-to-mix.html
https://github.com/raspberrypi/picotool
https://github.com/atomvm/AtomVM/releases

Atomvm-<raspberry-pico-soc>-<atomvm-version>.uf2

For example:
Atomvm-pico-v0.6.0.uf2

You will also find the sha256 hash for this file, which you should verify using the sha256sum
command on your local operating system.
You will also need a copy of the AtomVM core libraries, which include all of the compiled Erlang and
Elixir needed to run parts of the VM.
This library will generally take the form:

atomvmlib-<atomvm-version>.uf2

For example:
atomvmlib-v0.6.0.uf2

You will also find the sha256 hash for this file, which you should verify using the sha256sum
command on your local operating system.
To flash your Raspberry Pico, you will need to undertake a few steps that interact with your operating
file system.

Important It is important that you downloads the .uf2 versions of these files for the Raspberry Pico
platform.

For each of the above files, you will start your Raspberry Pico in bootloader mode by pressing
the BOOTSEL button on the Raspberry Pico dev board, while powering on the device. Doing so will
automatically boot the device and mount the Raspberry Pico on to your file system as a USB device.
You can then use normal operating system commands (such as cp, or even drag-and-drop) to copy
the above files to the mounted USB volume.
Note, however, that in general the USB device will auto-unmount after each file has been copied, so
you will need to repeat the procedure for each of the above two files.
On most Linux systems, the Raspberry Pico will be mounted at /run/media/${USER}/RPI-RP2.
On macOS system, the Raspberry Pico will be mounted at /Volumes/RPI-RP2.
For example:

Power on Raspberry Pico with BOOTSEL button pressed

$ ls -l /Volumes/RPI-RP2
total 16
-rwxrwxrwx 1 joe staff 241 Sep 5 2008 INDEX.HTM*
-rwxrwxrwx 1 joe staff 62 Sep 5 2008 INFO_UF2.TXT*

$ cp ~/Downloads/AtomVM-pico-v0.6.0.uf2 /Volumes/RPI-RP2/.

… at this point, the device will auto-unmount.
And again for the AtomVM core library (note that previously flashed .uf2 files have disappeared):

Power on Raspberry Pico with BOOTSEL button pressed

$ ls -l /Volumes/RPI-RP2
total 16
-rwxrwxrwx 1 joe staff 241 Sep 5 2008 INDEX.HTM*
-rwxrwxrwx 1 joe staff 62 Sep 5 2008 INFO_UF2.TXT*

$ cp ~/Downloads/atomvmlib-v0.6.0.uf2 /Volumes/RPI-RP2/.

… and again, at this point, the device will auto-unmount.

AtomVM documentation, Release 0.6.6+git.db7fa169

14 Chapter 3. Getting Started Guide

3.3.3 Potential Issues with macOS

There are known issues copying files to the Pico using macOS, and a lot of literature online. Usually
it’s best to use the Terminal rather than the Finder because the errors are more explicit. Copying may
also fail with UF2 files downloaded from the Internet, typically AtomVM release binaries.

$ cp ~/Downloads/AtomVM-pico_w-v0.6.0.uf2 /Volumes/RPI-RP2/.
cp: /Volumes/RPI-RP2/AtomVM-pico-v0.6.0.uf2: fcopyfile failed: Operation not
 permitted
cp: /Users/joe/Downloads/AtomVM-pico-v0.6.0.uf2: could not copy extended
 attributes to
/Volumes/RPI-RP2/AtomVM-pico-v0.6.0.uf2: Operation not permitted

Two issues appear here: one is macOS tries to copy extended attributes and this fails (but this error is
not a blocker), and the other is the “Operation not permitted” because the file is quarantined, having
been downloaded from the web.
First issue can be solved with cp -x if you don’t tolerate the error message and second with xattr
-d.

$ xattr -d com.apple.quarantine ~/Downloads/AtomVM-pico_w-v0.6.0.uf2
$ cp -x ~/Downloads/AtomVM-pico_w-v0.6.0.uf2 /Volumes/RPI-RP2/.
$

3.3.4 Deploying an AtomVM application for Generic Unix

An AtomVM application is a collection of BEAM files, which have been compiled using the Erlang or
Elixir compiler. These BEAM files are assembled into an AtomVM “packbeam” (.avm) file, which in
turn can be provided to the atomvm executable on the command line.
When the AtomVM virtual machine starts, it will search for the first module that contains an exported
start/0 function in this partition, and it will begin execution of the BEAM bytecode at that function.
AtomVM applications can be written in Erlang or Elixir, or a combination of both. The AtomVM
community has provided tooling for both platforms, making deployment of AtomVM applications as
seamless as possible.
For information about how to flash your application to your Raspberry Pico, see the AtomVM Tooling
chapter.

3.4 Getting Started on the Generic UNIX platform

The AtomVM virtual machine is supported a wide variety of Generic UNIX platforms, including
many Linux kernels and target architectures, FreeBSD, and MacOS, allowing users to write Erlang
and Elixir programs and run them on a local development machine. For specific information about
which Generic UNIX versions and architectures are supported, please refer to the AtomVM Release
Notes.
These instructions cover how to provision the AtomVM virtual machine onto your development
machine. Running applications locally can sometimes be a useful exercise in debugging.

Caution! Not all programming interfaces are supported on all platforms. See the AtomVM
Programmers Guide for more information.

For most applications, you should only need to install the VM once (or at least once per desired
AtomVM release). Once the VM is installed, you can then begin development of Erlang or Elixir
applications, which can then be flashed as part of your routine development cycle.

 AtomVM documentation, Release 0.6.6+git.db7fa169

3.4. Getting Started on the Generic UNIX platform 15

3.4.1 Generic UNIX Requirements

Deployment of AtomVM on the Generic UNIX platform requires the following components:
• A computer running MacOS or Linux (Windows support is not currently supported);
• An Erlang/OTP and compatible Elixir runtime;
• (recommended) For Erlang programs, rebar3;
• (recommended) For Elixir programs, mix, which ships with the Elixir runtime;

For information about specific versions of required software, see the AtomVM Release Notes.

3.4.2 Installing the AtomVM virtual machine

The following methods can be used to install the AtomVM virtual machine on the Generic UNIX plat-
form:

1. Download Linux Binaries
2. (MacOS only) Installing via macports or Homebrew;
3. Building from source.

Installation on Linux Platforms

Downloading a pre-built binary image for Linux is by far the easiest path to getting started with
development on a Linux development machine. Binary images contain the virtual machine.
Download the latest release image for Linux.
This image will generally take the form:

Atomvm-linux-<arch>-<atomvm-version>

where <arch> is the target architecture.
For example:

Atomvm-linux-x86_64-v0.6.0

You will also find the sha256 hash for this file, which you should verify using the sha256sum
command on your local operating system.
You will also need a copy of the AtomVM core libraries, which include all of the compiled Erlang and
Elixir needed to run parts of the VM.
This library will generally take the form:

atomvmlib-<atomvm-version>.avm

For example:
atomvmlib-v0.6.0.avm

You will also find the sha256 hash for this file, which you should verify using the sha256sum
command on your local operating system.

See also

See below for instructions about how to run the AtomVM binary, together with the AtomVM core
libraries on the command line.

Installation on MacOS

You can install AtomVM for Generic UNIX using macports or Homebrew. This instructions assume
you are familiar with these package managers.

AtomVM documentation, Release 0.6.6+git.db7fa169

16 Chapter 3. Getting Started Guide

https://erlang.org
https://elixir-lang.org
https://rebar3.org
https://elixir-lang.org/getting-started/mix-otp/introduction-to-mix.html
https://www.macports.org
https://brew.sh
https://github.com/atomvm/AtomVM/releases
https://www.macports.org
https://brew.sh

To install via macports:

$ sudo port install atomvm

Once installed, the atomvm executable should be available in your $PATH environment variable.

$ which atomvm
/opt/local/bin/atomvm

To install via Homebrew, you will first need to install the atomvm Homebrew Tap:

$ brew tap atomvm/atomvm

This command will make the atomvm Homebrew formula available to you.

$ brew install atomvm

Once installed, the atomvm executable should be available in your $PATH environment variable.

$ which atomvm
/usr/local/bin/atomvm

Building on MacOS from source

You may optionally build AtomVM from source and install the AtomVM virtual machine to your
development machine. Building AtomVM from source is slightly more involved, as it requires
the installation of third party libraries and is typically recommended only for users who are doing
development on the AtomVM virtual machine, or for developers implementing custom Nifs or ports.
Instructions for building AtomVM from source are covered in the AtomVM Build Instructions.

3.4.3 Running applications on the Generic UNIX platform

AtomVM may be run on UNIX-like platforms using the atomvm command.
You may specify one or more AVM files on the command line when running the atomvm command.
BEAM modules defined in earlier AVM modules on the command line take higher precedence that
BEAM modules included in AVM files later in the argument list.

$ atomvm /path/to/myapp.avm

To get the current version of AtomVM, use the -v option, e.g.:

$ atomvm -v
0.6.0

Use the -h option to get command line help:

$ atomvm -h

Syntax:

 /usr/local/lib/atomvm/AtomVM [-h] [-v] <path-to-avm-file>+

Options:

 -h Print this help and exit.
 -v Print the AtomVM version and exit.

Supply one or more AtomVM packbeam (.avm) files to start your application.

Example:

 $ /usr/local/lib/atomvm/AtomVM /path/to/my/application.avm /path/to

 AtomVM documentation, Release 0.6.6+git.db7fa169

3.4. Getting Started on the Generic UNIX platform 17

https://www.macports.org
https://brew.sh
https://brew.sh

/atomvmlib.avm

3.5 Getting Started with AtomVM WebAssembly

You can run AtomVM for WebAssembly with NodeJS or within common browsers (Safari, Chrome
and Chrome-based, Firefox).

3.5.1 Getting Started with AtomVM WebAssembly port for NodeJS

Download the latest release image for Node.
This image will generally take the form:

Atomvm-node-<atomvm-version>.js

For example:
Atomvm-node-v0.6.0.js

You will also find the sha256 hash for this file, which you should verify using the sha256sum
command on your local operating system.
AtomVM’s WebAssembly port for NodeJS may be run using node command and AtomVM.js, Atom-
VM.worker.js and AtomVM.wasm files.

$ node /path/to/Atomvm-node-v0.6.0.js /path/to/myapp.avm

3.5.2 Getting Started with AtomVM WebAssembly port for browsers

AtomVM may also be run in modern browsers (Safari, Chrome and Chrome-based, Firefox) using
AtomVM.js, AtomVM.worker.js and AtomVM.wasm files.
Please note that these files are different from the NodeJS ones.
Because AtomVM uses SharedArrayBuffer, to be executed by a browser, these files need to be served:

• on localhost or over HTTPS
• by a web server that also sends Cross-Origin-Opener-Policy and
Cross-Origin-Embedder-Policy headers. These headers are also called COOP and COEP
headers.

These security requirements are documented in Mozilla’s documentation.
Trying locally from AtomVM source tree

If you compile AtomVM for Unix as well as for Node as explained in the build instructions, you can
use an AtomVM-based toy webserver to serve the WebAssembly examples with:

$./src/AtomVM examples/emscripten/wasm_webserver.avm

This web server serves HTML files from examples/emscripten/. It works without HTTPS because
files are served on localhost.
Using a hosting service with a _headers file

You can also host the three files on a hosting service such as Netlify that uses _headers files.
The file could have the following content:

/*
Cross-Origin-Opener-Policy: same-origin
Cross-Origin-Embedder-Policy: require-corp

AtomVM documentation, Release 0.6.6+git.db7fa169

18 Chapter 3. Getting Started Guide

https://github.com/atomvm/AtomVM/releases
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer#security_requirements

Using web server such as Nginx

You can also host the three files on web server such as Nginx or Apache.
The configuration for Nginx would be:

server {
 add_header Cross-Origin-Opener-Policy "same-origin";
 add_header Cross-Origin-Embedder-Policy "require-corp";
 location / {
 ...
 }
}

Using Javascript service worker trick

If you have no possibility to modify the headers, for example with GitHub pages, you can still get
AtomVM to run in the browser using a Javascript service worker trick.
We did successfully use coi-serviceworker.

3.6 Where to go from here

The following resources may be useful for understanding how to develop Erlang or Elixir applications
for the AtomVM platform:

• AtomVM Tooling
• Example Programs
• Programmers Guide

 AtomVM documentation, Release 0.6.6+git.db7fa169

3.6. Where to go from here 19

https://github.com/gzuidhof/coi-serviceworker
https://github.com/atomvm/atomvm_examples

4 AtomVM Tooling

AtomVM provides an implementation of the Erlang virtual machine, and as such it provides runtime
support for applications targeted for the platform.
However, developers will typically make use of downstream tooling that simplifies the development
and provisioning of applications onto devices that are running the on the virtual machine.
This chapter presents an overview of these tools and how they can be used to make you more produc-
tive as an AtomVM developer.
Two tools are supported, one for Erlang developers, and one for Elixir developers:

• For Erlang developers: atomvm_rebar3_plugin
• For Elixir developers: ExAtomVM

4.1 atomvm_rebar3_plugin

The atomvm_rebar3_plugin is a rebar3 plugin that can be used to create and flash Erlang applica-
tions that run over AtomVM. Using this plugin greatly simplifies the process of building Erlang
applications that run over AtomVM, and is strongly encouraged for all users.

4.1.1 Prerequisites for atomvm_rebar3_plugin

To use the atomvm_rebar3_plugin, you will need the following software on your development
machine:

• A suitable version of the Erlang/OTP distribution. See the Release Notes for information about
supported Erlang/OTP versions.

• A recent version of the rebar3 command-line tool.
• (optional) The git command line tool, to follow examples in this chapter.
• For flashing to ESP32, the esptool program.
• For flashing to STM32, st-flash via stlink
• (optional) A serial console program such as minicom or screen, to view console output from

a device.
• (recommended) For rp2040, picotool for software resets on Raspberry Pi Pico. (optionally

used if found in PATH to disconnect active screen sessions, which normally prevent flashing)

4.1.2 Erlang Example Program

To see this plugin in action, we will clone the atomvm_examples Github repository, and build and
run the most simple

$ git clone https://github.com/atomvm/atomvm_examples
...
$ cd atomvm_examples/erlang/hello_world

From this directory we will run various rebar3 targets in the steps below.

4.1.3 Creating an AtomVM AVM file with rebar3

To create an AtomVM packbeam file (ending in .avm), use the packbeam target in the atomvm
namespace:

AtomVM documentation, Release 0.6.6+git.db7fa169

20 Chapter 4. AtomVM Tooling

https://atomvm.github.io/atomvm_rebar3_plugin
https://rebar3.org
https://atomvm.github.io/atomvm_rebar3_plugin
https://www.erlang.org
https://rebar3.org
https://git-scm.com
https://github.com/espressif/esptool
https://github.com/stlink-org/stlink
https://en.wikipedia.org/wiki/Minicom
https://en.wikipedia.org/wiki/GNU_Screen
https://github.com/raspberrypi/picotool
https://github.com/atomvm/atomvm_examples
https://rebar3.org

$ rebar3 atomvm packbeam
...
===> AVM file written to .../hello_world/_build/default/lib/hello_world.avm

See also

See the atomvm_rebar3_plugin page for more detailed instructions about how to use
the packbeam target.

4.1.4 Running applications on generic_unix

If you have installed AtomVM on a generic UNIX platform, you and run the example program
directly using the atomvm command:

$ atomvm _build/default/lib/hello_world.avm
Hello World
Return value: ok

For instructions about how to install AtomVM on the generic_unix platform, see the Getting
Started Guide

4.1.5 Flashing your application with rebar3

The atomvm_rebar3_plugin supports flash targets for various device types. These targets are
described in more detail below.
ESP32

To flash AtomVM AVM file to an ESP32 device, use the esp32_flash target in the atomvm names-
pace. Users will typically specify the device port and baud rate as command-line options to this
target.

Important In order to use the esp32_flash target, you will need to install the esptool program.

For example:

$ rebar3 atomvm esp32_flash --port /dev/ttyUSB0 --baud 921600
...
===> esptool.py --chip auto --port /dev/ttyUSB0 --baud 921600 --before
 default_reset
 --after hard_reset write_flash -u --flash_mode keep --flash_freq keep
 --flash_size detect
 0x210000 atomvm_examples/erlang/hello_world/_build/default/lib/hello_world.avm

Tip A baud rate of 921600 works well for most ESP32 devices, some can work reliably at higher rates
of 1500000, or even 2000000, but some devices (especially those with a 26Mhz crystal frequency, rather
than the more common 40 Mhz crystal) may need to use a slower baud rate such as 115200.

Note. A baud rate of 921600 works well for most ESP32 devices, some can work reliably at
higher rates of 1500000, or even 2000000, but some devices (especially those with a 26Mhz
crystal frequency, rather than the more common 40 Mhz crystal) may need to use a slower baud
rate such as 115200.

See the atomvm_rebar3_plugin page for more detailed instructions about how to use
the esp32_flash target.
You can now use a serial console program such as minicom or screen to view console output from
a device.

 ###

 AtomVM documentation, Release 0.6.6+git.db7fa169

4.1. atomvm_rebar3_plugin 21

https://atomvm.github.io/atomvm_rebar3_plugin
https://atomvm.github.io/atomvm_rebar3_plugin
https://github.com/espressif/esptool
https://atomvm.github.io/atomvm_rebar3_plugin
https://en.wikipedia.org/wiki/Minicom
https://en.wikipedia.org/wiki/GNU_Screen

 ### ######## ####### ## ## ## ## ## ##
 ## ## ## ## ## ### ### ## ## ### ###
 ## ## ## ## ## #### #### ## ## #### ####
 ## ## ## ## ## ## ### ## ## ## ## ### ##
 ######### ## ## ## ## ## ## ## ## ##
 ## ## ## ## ## ## ## ## ## ## ##
 ## ## ## ####### ## ## ### ## ##

 ###

I (852) AtomVM: Starting AtomVM revision 0.6.0-alpha.1
I (862) sys: Loaded BEAM partition boot.avm at address 0x1d0000 (size=262144
 bytes)
I (882) network_driver: Initialized network interface
I (882) network_driver: Created default event loop
I (902) AtomVM: Found startup beam esp32init.beam
I (922) AtomVM: Starting esp32init.beam...

AtomVM init.
I (932) sys: Loaded BEAM partition main.avm at address 0x210000 (size=1048576
bytes)
Starting application...
Hello World
AtomVM finished with return value: ok
I (972) AtomVM: AtomVM application terminated. Going to sleep forever ...

STM32

To flash AtomVM AVM file to an STM32 device, use the stm32_flash target in the atomvm names-
pace.

Important In order to use the stm32_flash target, you will need to install the st-flash tool from
the open source (bsd-3 licensed)stlink suite of stm32 utilities.

Since the AtomVM core libraries are not flashed to an STM32 device, you will need to include is
library in your application. As part of the build process for the STM32, you will have built
the AtomVM core libraries into a file named atomvmlib.avm

!DANGER! It is critical that the version of the AtomVM core libraries match the version of
the AtomVM virtual machine you built as part of the STM32 build. Be sure to use the version of
this library (written to build/lib/atomvmlib.avm during the build process). For more infor-
mation about how to build AtomVM for the STM32 platform, see the AtomVM Build Instructions.

In general, it is also a good idea to use the prune option when creating your application’s AVM file.
This way, only the modules that are needed for your application will be included, which will decrease
the size of your application’s AVM file, leading to faster development times.
Edit the rebar.config so that it includes the following atomvm_rebar3_plugin stanza, if it does
not already.

{atomvm_rebar3_plugin, [
 {packbeam, [prune]}
]}.

This stanza will guarantee that the generated packbeam file will be pruned when created.
You will need to first build a packbeam file that includes the AtomVM core libraries. Use
the packbeam task in the atomvm namespace, and specify the path to the atomvmlib.avm file you
created as part of the build.

AtomVM documentation, Release 0.6.6+git.db7fa169

22 Chapter 4. AtomVM Tooling

https://github.com/stlink-org/stlink

$ rebar3 atomvm packbeam -e /path/to/atomvmlib.avm

You may now flash your application to your STM32 device:

$ rebar3 atomvm stm32_flash
...
===> st-flash --reset write _build/default/lib/hello_world.avm 0x8080000

For devices with only 512KB of flash the application address is different and must be specified:

$ rebar3 atomvm stm32_flash -o 0x8060000
...
===> st-flash --reset write _build/default/lib/hello_world.avm 0x8060000

See the atomvm_rebar3_plugin page for more detailed instructions about how to use
the stm32_flash target.
You can now use a serial console program such as minicom or screen to view console output from
a device.

 ###

 ### ######## ####### ## ## ## ## ## ##
 ## ## ## ## ## ### ### ## ## ### ###
 ## ## ## ## ## #### #### ## ## #### ####
 ## ## ## ## ## ## ### ## ## ## ## ### ##
 ######### ## ## ## ## ## ## ## ## ##
 ## ## ## ## ## ## ## ## ## ## ##
 ## ## ## ####### ## ## ### ## ##

 ###

INFO [51] AtomVM: Starting AtomVM revision 0.6.0-alpha.2+git.59e25c34
INFO [58] AtomVM: Booting file mapped at: 0x8080000, size: 444
INFO [64] AtomVM: Starting: hello_world.beam...

Hello World
INFO [74] AtomVM: Exited with return: ok
INFO [78] AtomVM: AtomVM application terminated. Going to sleep forever ...

Raspberry Pico

To generate a Raspberry Pico uf2 file from an AtomVM AVM file and flash it to an rp2040 device, use
the pico_flash target in the atomvm namespace.
For example:

$ rebar3 atomvm pico_flash
...
===> AVM file written to _build/default/lib/hello_world.avm
===> Resetting device at path /dev/ttyACM0
===> Waiting for the device at path /run/media/${USER}/RPI-RP2 to settle and
 mount...
===> Copying atomvm_examples/erlang/hello_world/_build/default/lib/hello.uf2 to
 /run/media/${USER}/RPI-RP2...

See the atomvm_rebar3_plugin page for more detailed instructions about how to use
the pico_flash target.
You can now use a serial console program such as minicom or screen to view console output from
a device. The default build will wait 20 seconds for a serial connection to be established before
starting the application.

 AtomVM documentation, Release 0.6.6+git.db7fa169

4.1. atomvm_rebar3_plugin 23

https://atomvm.github.io/atomvm_rebar3_plugin
https://en.wikipedia.org/wiki/Minicom
https://en.wikipedia.org/wiki/GNU_Screen
https://atomvm.github.io/atomvm_rebar3_plugin
https://en.wikipedia.org/wiki/Minicom
https://en.wikipedia.org/wiki/GNU_Screen

 ###

 ### ######## ####### ## ## ## ## ## ##
 ## ## ## ## ## ### ### ## ## ### ###
 ## ## ## ## ## #### #### ## ## #### ####
 ## ## ## ## ## ## ### ## ## ## ## ### ##
 ######### ## ## ## ## ## ## ## ## ##
 ## ## ## ## ## ## ## ## ## ## ##
 ## ## ## ####### ## ## ### ## ##

 ###

Starting AtomVM revision 0.6.0-alpha.2+git.59e25c34
Found startup beam hello_world.beam
Starting hello_world.beam...

Hello World
AtomVM finished with return value: ok
AtomVM application terminated. Going to sleep forever ...

If no connection is made before the timeout is reached the application will start, but the uart console
will not be available. At this point you can use picotool to reboot the device into application
mode.
Example:

$ picotool reboot -f
The device was asked to reboot into application mode.

$

This will again give you 20 seconds to establish a serial monitor connection. For information about
changing this timeout, or locking down the device so that software resets no longer work (requiring
that the device be power cycled and the BOOTSEL button help when powering on to flash) consult
the rp2040 section of the Build Instructions.

4.2 ExAtomVM

The ExAtomVM tool is a mix plugin that can be used to create and flash Elixir applications that run
over AtomVM. Using this plugin greatly simplifies the process of building Elixir applications that
run over AtomVM, and is strongly encouraged for new users.

4.2.1 Prerequisites for ExAtomVM

To use the ExAtomVM tool, you will need the following software on your development machine:
• A suitable version of the Erlang/OTP distribution. See the Release Notes for information about

supported Erlang/OTP versions.
• A suitable version of the Elixir distribution. See the Release Notes for information about

supported Elixir versions.
• (optional) The git command line tool, to follow examples in this chapter.
• For flashing to ESP32, the esptool program.
• (optional) A serial console program such as minicom or screen, to view console output from

a device.

4.2.2 Elixir Example Program

To see this plugin in action, we will clone the atomvm_examples Github repository, and build and

AtomVM documentation, Release 0.6.6+git.db7fa169

24 Chapter 4. AtomVM Tooling

https://github.com/raspberrypi/picotool
https://github.com/atomvm/ExAtomVM
https://elixir-lang.org/getting-started/mix-otp/introduction-to-mix.html
https://elixir-lang.org
https://github.com/atomvm/ExAtomVM
https://www.erlang.org
https://elixir-lang.org
https://git-scm.com
https://github.com/espressif/esptool
https://en.wikipedia.org/wiki/Minicom
https://en.wikipedia.org/wiki/GNU_Screen
https://github.com/atomvm/atomvm_examples

run the most simple

$ git clone https://github.com/atomvm/atomvm_examples
...
$ cd atomvm_examples/elixir/HelloWorld

From this directory we will run various mix targets in the steps below.

4.2.3 Creating an AtomVM AVM file with mix

To create an AtomVM packbeam file (ending in .avm), first use the mix.deps target to mix in order
to download any dependencies:

$ mix deps.get
* Updating exatomvm (https://github.com/atomvm/ExAtomVM/)
remote: Enumerating objects: 17, done.
remote: Counting objects: 100% (17/17), done.
remote: Compressing objects: 100% (10/10), done.
remote: Total 17 (delta 6), reused 16 (delta 6), pack-reused 0
origin/HEAD set to main

You can now use the mix atomvm.packbeam task to create a packbeam (ending in .avm) file:

$ mix atomvm.packbeam
==> exatomvm
Compiling 5 files (.ex)
Generated exatomvm app
==> HelloWorld
Compiling 1 file (.ex)
Generated HelloWorld app
No avm_deps directory found.
This message can be safely ignored when standard libraries are already flashed to
 lib
partition.

The HelloWorld.avm is located in the top level directory:

$ ls -l HelloWorld.avm
-rw-rw-r-- 1 user wheel 19120 Oct 13 14:06 HelloWorld.avm

See also

See the ExAtomVM page for more detailed instructions about how to use the mix atomvm.packbeam
task.

4.2.4 Running on the generic_unix platform

If you have installed AtomVM on a generic UNIX platform, you and run the example program
directly using the atomvm command:

$ atomvm HelloWorld.avm
Hello World
Return value: ok

For instructions about how to install AtomVM on the generic_unix platform, see the Getting
Started Guide

4.2.5 Flashing your application with mix

The ExAtomVM plugin supports flash targets for various device types. These targets are described in
more detail below.

 AtomVM documentation, Release 0.6.6+git.db7fa169

4.2. ExAtomVM 25

https://elixir-lang.org/getting-started/mix-otp/introduction-to-mix.html
https://elixir-lang.org/getting-started/mix-otp/introduction-to-mix.html
https://github.com/atomvm/ExAtomVM
https://github.com/atomvm/ExAtomVM

ESP32 flash task

To flash AtomVM packbeam file to an ESP32 device, use the mix atomvm.esp32.flash task.
Users will typically specify the device port and baud rate as command-line options to this target.

Important In order to use the mix atomvm.esp32.flash task, you will need to install
the esptool program.

For example:

$ mix atomvm.esp32.flash --port /dev/ttyUSB0 --baud 921600

Tip A baud rate of 921600 works well for most ESP32 devices, some can work reliably at higher rates
of 1500000, or even 2000000, but some devices (especially those with a 26Mhz crystal frequency, rather
than the more common 40 Mhz crystal) may need to use a slower baud rate such as 115200.

See the ExAtomVM page for more detailed instructions about how to use the mix
atomvm.esp32.flash task.
You can now use a serial console program such as minicom or screen to view console output from
a device.

 ###

 ### ######## ####### ## ## ## ## ## ##
 ## ## ## ## ## ### ### ## ## ### ###
 ## ## ## ## ## #### #### ## ## #### ####
 ## ## ## ## ## ## ### ## ## ## ## ### ##
 ######### ## ## ## ## ## ## ## ## ##
 ## ## ## ## ## ## ## ## ## ## ##
 ## ## ## ####### ## ## ### ## ##

 ###

I (852) AtomVM: Starting AtomVM revision 0.6.0-alpha.1
I (862) sys: Loaded BEAM partition boot.avm at address 0x1d0000 (size=262144
 bytes)
I (882) network_driver: Initialized network interface
I (882) network_driver: Created default event loop
I (902) AtomVM: Found startup beam esp32init.beam
W (902) sys: AVM partition not found for lib.avm
I (902) AtomVM: Unable to mount lib.avm partition. Hopefully the AtomVM core
 libraries
are included in your application.
I (922) AtomVM: Starting esp32init.beam...

AtomVM init.
I (932) sys: Loaded BEAM partition main.avm at address 0x250000 (size=1048576
 bytes)
Starting application...
Hello World
AtomVM finished with return value: ok
I (972) AtomVM: AtomVM application terminated. Going to sleep forever ...

STM32 flash task

To flash AtomVM packbeam file to an STM32 device, use the mix atomvm.stm32.flash task.

Important In order to use the mix atomvm.stm32.flash task, you will need to install
the st-flash tool from the open source (bsd-3 licensed) stlink suite of stm32 utilities.

AtomVM documentation, Release 0.6.6+git.db7fa169

26 Chapter 4. AtomVM Tooling

https://github.com/espressif/esptool
https://github.com/atomvm/ExAtomVM
https://en.wikipedia.org/wiki/Minicom
https://en.wikipedia.org/wiki/GNU_Screen
https://github.com/stlink-org/stlink

For example:

$ mix atomvm.stm32.flash

Most devices do not need to enter the default application offset 0x8080000, but devices with only
512KiB of flash storage need to use --flash_offset=0x8060000 parameter setting to upload
the application to the correct flash location.
BlackPill V2 example:

$ mix atomvm.stm32.flash --flash_offset=0x8060000

If the st-flash tool is not in environment PATH, the full path to the st-flash tool should be
exported to the environment variable ATOMVM_MIX_PLUGIN_STFLASH, for example:

$ export ATOMVM_MIX_PLUGIN_STFLASH=/opt/stlink/bin/st-flash

4.3 atomvm_packbeam

The atomvm_packbeam tool is a simple command-line utility that allows you to create, inspect, and
manipulate AtomVM PackBEAM files. By convention, PackBEAM files end in the .avm suffix and are
referred to as “AVM” files, in the remainder of this section.

Tip Users generally do not have a need to use the packbeam tool directly. Instead, the functionality
of this tool is embedded in the atomvm_rebar3_plugin.

4.3.1 Installation

Consult the atomvm_packbeam Github page for instructions about how to install
the atomvm_packbeam utility. Once installed, you should have the packbeam command line tool
available in your PATH.

4.3.2 Usage

The packbeam command supports the following sub-commands:
• create Create an AVM file from a collection of files.
• list List the contents of an AVM file.
• extract Extract elements from an AVM file.
• delete Delete elements from an AVM file.

These sub-commands are described in more detail below.

See also

These notes provide only a high-level view of this packbeam utility. For more detailed information,
see the atomvm_packbeam Github repository.

Creating AVM files

To create an AVM from a list of existing files (typically .beam files), use the create subcommand.
Specify the output .avm first, followed by a list of files you would like to include in the output file.
E.g.,

$ packbeam create output.avm foo.beam bar.beam

 AtomVM documentation, Release 0.6.6+git.db7fa169

4.3. atomvm_packbeam 27

https://atomvm.github.io/atomvm_packbeam
https://atomvm.github.io/atomvm_rebar3_plugin
https://atomvm.github.io/atomvm_packbeam
https://atomvm.github.io/atomvm_packbeam

Tip Creation of AVM files is more typically done via the atomvm_rebar3_plugin; however,
the packbeam command can be used to inspect and/or manipulate AVM files after they have been
created by this plugin. This isn’t typically required, but in some instances it can be useful.

Note that you can supply a previously created AVM file as an input to another creation, which will
result in including all the files in the source AVM file in the destination.

$ packbeam create new_output.avm tapas.beam output.avm

You can also embed non-BEAM files in an AVM file. These files are accessible programmatically
withing atomvm via the atomvm:read_priv/2 function, described in the AtomVM Programmer’s
Guide.
For example, if you wanted to add a file my_app/priv/my_file.txt to a new file, you could use
the following command:

$ packbeam create my_app.beam my_app/priv/my_file.txt my_lib.avm

Important There are conventions for embedding non-BEAM files in AVM files that need to be
followed in order to be able to load these files programmatically within AtomVM. Generally, these
files must obey the path <module-name>/priv/<path-to-file>, where <module-name> is
the name of a module, and <path-to-file> is a path to the embedded file. (This path may include
embedded / separators). Example: my_app/priv/bubbles/sample.txt

Start Flags

An AtomVM application must contain a start entrypoint, i.e., a module that exports the start/0
function. You can specify the name of this module via the --start flag. E.g.,

$ packbeam create --start main my_app.avm foo.beam bar.beam main.beam

Use of this flag will ensure that the main.beam module will be found first in the search order when
the AtomVM virtual machine starts your application.
Pruning

Pruning an AVM file is a useful mechanism for making your AVM files smaller, and thus faster to
flash and including less data than necessary. You can prune an AVM using the

$ packbeam create --start main --prune my_app.beam foo.beam bar.beam main.beam
 a.beam \
b.beam c.beam

Any BEAM files that contain no transitive references from the start module are removed from
the output AVM file, making them smaller and less bloated.

Important You can only use the --prune option if you specify a --start module.

Listing AVM file contents

You can list the contents of an AVM file via the list sub-command.

$ packbeam list myapp.avm
myapp.beam * [384]
myapp/priv/application.bin [220]

Any BEAM files with an exported start/0 function are listed with an asterisk (*). In general, if you
want your application to start from a designated entrypoint, that BEAM file should occur first in
the list.
The size (in bytes) of the entries are listed in square brackets ([]).

AtomVM documentation, Release 0.6.6+git.db7fa169

28 Chapter 4. AtomVM Tooling

https://atomvm.github.io/atomvm_rebar3_plugin

Extracting AVM file contents

You can extract elements of an AVM file, writing them to the file system, using the extract sub-com-
mand.
Specify the directory location into which you would like to extract the files using the -out flag,
followed by the path to the input AVM file, and a list of paths from the input AVM you would like to
extract.

$ mkdir mydir
$ packbeam extract -out mydir myapp.avm myapp/priv/application.bin
Writing to mydir ...
x myapp/priv/application.bin

Deleting AVM file contents

You can delete elements of an AVM file using the delete sub-command.
Specify the AVM file you would like to write as output (which can be the same as the input AVM file)
using the -out flag, followed by the path to the input AVM file, and a list of paths from the input
AVM you would like to delete.

$ packbeam delete -out myapp2.avm myapp.avm myapp/priv/application.bin

shell$ packbeam list myapp2.avm
myapp.beam * [384]

4.3.3 Help

To get help about packbeam syntax, use the help subcommand:

$ packbeam help

packbeam version 0.7.0

Syntax:
 packbeam <sub-command> <options> <args>

The following sub-commands are supported:

 create <options> <output-avm-file> [<input-file>]+
 where:
 <output-avm-file> is the output AVM file,
 [<input-file>]+ is a list of one or more input files,
 and <options> are among the following:
 [--prune|-p] Prune dependencies
 [--start|-s <module>] Start module
 [--remove_lines|-r] Remove line number information from AVM files

 list <options> <avm-file>
 where:
 <avm-file> is an AVM file,
 and <options> are among the following:
 [--format|-f csv|bare|default] Format output

 extract <options> <avm-file> [<element>]*
 where:
 <avm-file> is an AVM file,
 [<element>]+ is a list of one or more elements to extract
 (if empty, then extract all elements)
 and <options> are among the following:
 [--out|-o <output-directory>] Output directory into which to write
 elements

 AtomVM documentation, Release 0.6.6+git.db7fa169

4.3. atomvm_packbeam 29

 (if unspecified, use the current working directory)

 delete <options> <avm-file> [<element>]+
 where:
 <avm-file> is an AVM file,
 [<element>]+ is a list of one or more elements to delete,
 and <options> are among the following:
 [--out|-o <output-avm-file>] Output AVM file

 version
 Print version and exit

 help
 Print this help

See also

For more detailed information about the atomvm_packbeam utility, see the atomvm_packbeam
documentation Github page.

4.4 Where to go from here

With knowledge of AtomVM tooling, you can more easily follow the AtomVM Example Programs, or
read the Programmers Guide and start writing your own applications.

AtomVM documentation, Release 0.6.6+git.db7fa169

30 Chapter 4. AtomVM Tooling

https://github.com/atomvm/atomvm_packbeam
https://atomvm.github.io/atomvm_packbeam
https://atomvm.github.io/atomvm_packbeam
https://github.com/atomvm/atomvm_examples

Chapter 5

Programmers Guide

This guide is intended for programmers who develop applications targeted for AtomVM.
As an implementation of the Erlang virtual machine, AtomVM is designed to execute unmodified
byte-code instructions compiled into BEAM files, either by the Erlang or Elixir compilers. This allow
developers to write programs in their BEAM programming language of choice, and to use
the common Erlang community tool-chains specific to their language platform, and to then deploy
those applications onto the various devices that AtomVM supports.
This document describes the development workflow when writing AtomVM applications, as well as
a high-level overview of the various APIs that are supported by AtomVM. With an understanding of
this guide, you should be able to design, implement, and deploy applications onto a device running
the AtomVM virtual machine.

5.1 AtomVM Features

Currently, AtomVM implements a strict subset of the BEAM instruction set.
A high level overview of the supported language features include:

• All the major Erlang types, including
• integers (with size limits)
• floats
• tuples
• lists
• binaries
• maps

• support for many Erlang BIFs and guard expressions to support the above types
• pattern matching (case statements, function clause heads, etc)
• try ... catch ... finally constructs
• anonymous functions
• process spawn and spawn_link
• send (!) and receive messages
• bit syntax (with some restrictions)
• reference counted binaries
• stacktraces
• symmetric multi-processing (SMP)

 31

In addition, several features are supported specifically for integration with micro-controllers, includ-
ing:

• Wifi networking (network)
• UDP and TCP/IP support (inet, gen_tcp and gen_udp)
• Peripheral and system support on micro-controllers, including

• GPIO, including pins reads, writes, and interrupts
• I2C interface
• SPI interface
• UART interface
• LEDC (PWM)
• non-volatile storage (NVS)
• RTC storage
• deep sleep

5.1.1 Limitations

While the list of supported features is long and growing, the currently unsupported Erlang/OTP and
BEAM features include (but are not limited to):

• Atoms. Atoms larger than 255 bytes (255 ascii characters) are not supported.
• Bignums. Integer values are restricted to 64-bit values.
• Bit Syntax. While packing and unpacking of arbitrary (but less than 64-bit) bit values is

supported, packing and unpacking of integer values at the start or end of a binary, or bordering
binary packing or extraction must align on 8-bit boundaries. Arbitrary bit length binaries are not
currently supported.

• The epmd and the disterl protocols are not supported.
• There is no support for code hot swapping.
• There is no support for a Read-Eval-Print-Loop. (REPL)
• Numerous modules and functions from Erlang/OTP standard libraries (kernel, stdlib, sasl,

etc) are not implemented.

AtomVM bit syntax is restricted to alignment on 8-bit boundaries. Little-endian and signed insertion
and extraction of integer values is restricted to 8, 16, and 32-bit values. Only unsigned big and little
endian 64-bit values can be inserted into or extracted from binaries.
It is highly unlikely that an existing Erlang program targeted for Erlang/OTP will run unmodified on
AtomVM. And indeed, even as AtomVM matures and additional features are added, it is more likely
than not that Erlang applications will need to targeted specifically for the AtomVM platform.
The intended target environment (small, cheap micro-controllers) differs enough from desktop or
server-class systems in both scale and APIs that special care and attention is needed to target applica-
tions for such embedded environments.
That being said, many of the features of the BEAM are supported and provide a rich and compelling
development environment for embedded devices, which Erlang and Elixir developers will find
natural and productive.

5.2 AtomVM Development

This section describes the typical development environment and workflow most AtomVM developers

AtomVM documentation, Release 0.6.6+git.db7fa169

32 Chapter 5. Programmers Guide

are most likely to use.

5.2.1 Development Environment

In general, for most development purposes, you should be able to get away with an Erlang/OTP
development environment, and for Elixir developers, and Elixir development environment. For
specific version requirements, see the Release Notes.
We assume most development will take place on some UNIX-like environment (e.g., Linux, FreeBSD,
or MacOS). Consult your local package manager for installation of these development environments.
Developers will want to make use of common Erlang or Elixir development tools, such as rebar3 for
Erlang developers or mix for Elixir developers.
Developers will need to make use of some AtomVM tooling. Fortunately, there are several choices for
developers to use:

1. AtomVM PackBEAM executable (described below)
2. atomvm_rebar3_plugin, for Erlang development using rebar3.
3. ExAtomVM Mix plugin, Elixir development using Mix.

Some testing can be performed on UNIX-like systems, using the AtomVM executable that is suitable for
your development environment. AtomVM applications that do not make use of platform-specific
APIs are suitable for such tests.
Deployment and testing on micro-controllers is slightly more involved, as these platforms require
additional hardware and software, described below.
ESP32 Deployment Requirements

In order to deploy AtomVM applications to and test on the ESP32 platform, developers will need:
• A computer running MacOS or Linux (Windows support is TBD);
• An ESP32 module with a USB/UART connector (typically part of an ESP32 development board);
• A USB cable capable of connecting the ESP32 module or board to your development machine

(laptop or PC);
• The esptool program, for flashing the AtomVM image and AtomVM programs;
• (Optional, but recommended) A serial console program, such as minicom or screen, so that

you can view console output from your AtomVM application.

STM32 Deployment Requirements

• A computer running MacOS or Linux (Windows is not currently supported);
• An stm32 board with a USB/UART connector (these are built into some boards such as

the Nucleo product line) and a minimum of 512k (1M recommended) of flash and a minimum of
100k RAM;

• A USB cable capable of connecting the STM32 board or external UART connector to your devel-
opment machine (laptop or PC);

• st-flash via stlink, to flash both AtomVM and your packed AVM applications. Make sure to
follow its installation procedure before proceeding further.

• packbeam the AtomVM for packing and stripping *.beam files into the AtomVM *.avm
format.

• (Optional, but recommended) A serial console program, such as minicom or screen, so that
you can view console output from your AtomVM application.

Raspberry Pi Pico Deployment Requirements

• A computer running MacOS or Linux (Windows support is not currently supported);

 AtomVM documentation, Release 0.6.6+git.db7fa169

5.2. AtomVM Development 33

https://github.com/atomvm/atomvm_rebar3_plugin
https://rebar3.readme.io
https://github.com/atomvm/ExAtomVM
https://elixir-lang.org/getting-started/mix-otp/introduction-to-mix.html
https://github.com/espressif/esptool
https://github.com/stlink-org/stlink
https://github.com/stlink-org/stlink#installation
https://github.com/atomvm/atomvm_packbeam

• A Raspberry Pico board with a USB/UART connector (typically part of a development board);
• A USB cable capable of connecting the Raspberry Pico module or board to your development

machine (laptop or PC);
• (Optional, but recommended) A serial console program, such as minicom or screen, so that

you can view console output from your AtomVM application.

5.2.2 Development Workflow

For the majority of users, AtomVM applications are written in the Erlang or Elixir programming
language. These applications are compiled to BEAM (.beam) files using standard Erlang or Elixir
compiler tool chains (erlc, rebar3, mix, etc). The generated BEAM files contain byte-code that can
be executed by the Erlang/OTP runtime, or by the AtomVM virtual machine.

Note In a small number of cases, it may be useful to write parts of an application in the C program-
ming language, as AtomVM nifs or ports. However, writing AtomVM nifs and ports is outside of
the scope of this document.

Once Erlang and/or Elixir files are compiled to BEAM files, AtomVM provides tooling for processing
and aggregating BEAM files into AtomVM Packbeam (.avm) files, using AtomVM tooling, distributed
as part of AtomVM, or as provided through the AtomVM community.
AtomVM packbeam files are the applications and libraries that run on the AtomVM virtual machine.
For micro-controller devices, they are “flashed” or uploaded to the device; for command-line use of
AtomVM (e.g., on Linux, FreeBSD, or MacOS), they are supplied as the first parameter to
the AtomVM command.
The following diagram illustrates the typical development workflow, starting from Erlang or Elixir
source code, and resulting in a deployed Packbeam file:

*.erl or *.ex *.beam
+-------+ +-------+
| |+ | |+
| ||+ | ||+
| ||| --------> | |||
| ||| Erlang/Elixir | |||
+-------+|| Compiler +-------+||
 +-------+| +-------+|
 +-------+ +-------+
 ^ |
 | | packbeam
 | |
 | v
 | +-------+
 | | |
 | test | |
 | debug | |
 | fix | |
 | +-------+
 | app.avm
 | |
 | | flash/upload
 | |
 | v
 +-------------------- Micro-controller
 device

The typical compile-test-debug cycle can be summarized in the following steps:
1. Deploy the AtomVM virtual machine to your device
2. Develop an AtomVM application in Erlang or Elixir

AtomVM documentation, Release 0.6.6+git.db7fa169

34 Chapter 5. Programmers Guide

1. Write application
2. Deploy application to device
3. Test/Debug/Fix application
4. Repeat

Deployment of the AtomVM virtual machine and an AtomVM application currently require a USB
serial connection. There is currently no support for over-the-air (OTA) updates.
For more information about deploying the AtomVM image and AtomVM applications to your device,
see the Getting Started Guide

5.3 Applications

An AtomVM application is a collection of BEAM files, aggregated into an AtomVM “Packbeam”
(.avm) file, and typically deployed (flashed) to some device. These BEAM files be be compiled from
Erlang, Elixir, or any other language that targets the Erlang VM.

Attention! The return value from the start/0 function is ignored on the the generic_unix
platform, most MCU platforms have the option of rebooting the device if the start/0 function
returns a value other than ok. Consult the Build Instructions for your device to see how this is
configured.

Here, for example is one of the smallest AtomVM applications you can write:

-module(myapp).

-export([start/0]).

start() ->
 ok.

This particular application doesn’t do much, of course. The application will start and immediately
terminate, with a return value of ok. Typical AtomVM applications will be more complex than this
one, and the AVM file that contains the application BEAM files will be considerably larger and more
complex than the above program.
Most applications will spawn processes, send and receive messages between processes, and wait for
certain conditions to apply before terminating, if they terminate at all. For applications that spawn
processes and run forever, you may need to add an empty receive ... end block, to prevent
the AtomVM from terminating prematurely, e.g.,

wait_forever() ->
 receive X -> X end.

5.3.1 Packbeam files

AtomVM applications are packaged into Packbeam (.avm) files, which contain collections of files,
typically BEAM (.beam) files that have been generated by the Erlang or Elixir compiler.
At least one BEAM module in this file must contain an exported start/0 function. The first module
in a Packbeam file that contain this function is the entry-point of your application and will be
executed when the AtomVM virtual machine starts.
Not all files in a Packbeam need to be BEAM modules – you can embed any type of file in a Packbeam
file, for consumption by your AtomVM application.

 AtomVM documentation, Release 0.6.6+git.db7fa169

5.3. Applications 35

See also

The Packbeam format is described in more detail in the AtomVM PackBEAM format.

The AtomVM community has provided several tools for simplifying your experience, as a developer.
These tools allow you to use standard Erlang and Elixir tooling (such as rebar3 and mix) to build
Packbeam files and deploy then to your device of choice.

5.3.2 packbeam tool

The packbeam tool is a command-line application that can be used to create Packbeam files from
a collection of input files:

$ packbeam help
packbeam version 0.7.0
Syntax:
 packbeam <sub-command> <options> <args>

The following sub-commands are supported:

 create <options> <output-avm-file> [<input-file>]+
 where:
 <output-avm-file> is the output AVM file,
 [<input-file>]+ is a list of one or more input files,
 and <options> are among the following:
 [--prune|-p] Prune dependencies
 [--start|-s <module>] Start module
 [--remove_lines|-r] Remove line number information from AVM
 files

 list <options> <avm-file>
 where:
 <avm-file> is an AVM file,
 and <options> are among the following:
 [--format|-f csv|bare|default] Format output

 extract <options> <avm-file> [<element>]*
 where:
 <avm-file> is an AVM file,
 [<element>]+ is a list of one or more elements to extract
 (if empty, then extract all elements)
 and <options> are among the following:
 [--out|-o <output-directory>] Output directory into which to
 write elements
 (if unspecified, use the current working directory)

 delete <options> <avm-file> [<element>]+
 where:
 <avm-file> is an AVM file,
 [<element>]+ is a list of one or more elements to delete,
 and <options> are among the following:
 [--out|-o <output-avm-file>] Output AVM file

 version
 Print version and exit

 help
 Print this help

For more information consult the packbeam section of AtomVM Tooling.

AtomVM documentation, Release 0.6.6+git.db7fa169

36 Chapter 5. Programmers Guide

5.3.3 Running AtomVM

AtomVM is executed in different ways, depending on the platform. On most microcontrollers (e.g.,
the ESP32), the VM starts when the device is powered on. On UNIX platforms, the VM is started
from the command-line using the AtomVM executable.
AtomVM will use the first module in the supplied AVM file that exports a start/0 function as
the entrypoint for the application.
AtomVM program syntax

On UNIX platforms, you can specify a BEAM file or AVM file as the first argument to the executable,
e.g.,

$ AtomVM foo.avm

Important If you start the AtomVM executable with a BEAM file, then the corresponding module may
not make any calls to external function in other modules, with the exception of built-in functions and
Nifs that are included in the VM.

5.4 Core APIs

The AtomVM virtual machine provides a set of Erlang built-in functions (BIFs) and native functions
(NIFs), as well as a collection of Erlang and Elixir libraries that can be used from your applications.
This section provides an overview of these APIs. For more detailed information about specific APIs,
please consult the API reference documentation.

5.4.1 Standard Libraries

AtomVM provides a limited implementations of standard library modules, including:
• base64

• gen_server

• gen_statem

• io and io_lib
• lists

• maps

• proplists

• supervisor

• timer

In addition AtomVM provides limited implementations of standard Elixir modules, including:
• List

• Tuple

• Enum

• Kernel

• Module

• Process

• Console

 AtomVM documentation, Release 0.6.6+git.db7fa169

5.4. Core APIs 37

For detailed information about these functions, please consult the API reference documentation.
These modules provide a strict subset of functionality from their Erlang/OTP counterparts. However,
they aim to be API-compatible with the Erlang/OTP interfaces, at least for the subset of provided
functionality.

5.4.2 Spawning Processes

AtomVM supports the actor concurrency model that is pioneered in the Erlang/OTP runtime. As
such, users can spawn processes, send messages to and receive message from processes, and can link
or monitor processes to be notified if they have crashed.
To spawn a process using a defined or anonymous function, pass the function to the spawn/1 func-
tion:

Pid = spawn(fun run_some_code/0),

The function you pass may admit closures, so for example you can pass variables defined outside of
the scope of the function to the anonymous function to pass into spawn/1:

Args = ...
Pid = spawn(fun() -> run_some_code_with_args(Args) end),

Alternatively, you can pass a module, function name, and list of arguments to the spawn/3 function:

Args = ...
Pid = spawn(?MODULE, run_some_code_with_args, [Args]),

The spawn_opt/2,4 functions can be be used to spawn a function with additional options that
control the behavior of the spawned processes, e.g.,

Pid = spawn_opt(fun run_some_code/0, [{min_heap_size, 1342}]),

The options argument is a properties list containing optionally the following entries:
Key Value Type Default Value Description

min_heap_size non_neg_integer() none

Minimum heap size
of the process.
The heap will shrink
no smaller than this
size.

max_heap_size non_neg_integer() unbounded

Maximum heap size
of the process.
The heap will grow
no larger than this
size.

link boolean() false

Whether to link
the spawned process
to the spawning
process.

monitor boolean() false

Whether to link
the spawning
process should
monitor the spawned
process.

atomvm_heap_growth
bounded_free | minimum
| fibonacci

bounded_free
Strategy to grow
the heap of
the process.

AtomVM documentation, Release 0.6.6+git.db7fa169

38 Chapter 5. Programmers Guide

5.4.3 Console Output

There are several mechanisms for writing data to the console.
For common debugging, many users will find erlang:display/1 sufficient for debugging:

erlang:display({foo, [{bar, tapas}]}).

The output parameter is any Erlang term, and a newline will be appended automatically.
Users may prefer using the io:format/1,2 functions for more controlled output:

io:format("The ~p did a ~p~n", [friddle, frop]).

Tip The io_lib module can be used to format string data, as well.

5.4.4 Logging

AtomVM supports a subset of the OTP logging facility, allowing users to send log event to log
handlers (by default, the console), and to install handlers that handle log events.
To log events, you are encouraged to use the logging macros from the OTP kernel application. You
can use these macros at compile time, and the generated code can be run in AtomVM.
For example:

-include_lib("kernel/include/logger.hrl").
...
?LOG_NOTICE("Something happened that might require your attention: ~p",
 [TheThing])

By default, this will result in a message displayed on the console, with a timestamp, log level, PID of
the process that initiated the log message, the module, function, and function arity, together with
the supplied log message:

2023-07-04T18:34:56.387 [notice] <0.1.0> test_logger:test_default_logger/0
 Something
happened that might require your attention: ThatThingThatHappened

Tip Note that log messages need not (and generally should not) include newline separators (~n) in log
format messages, unless necessary.

Users may provide a format string, with an optional list of arguments. Alternatively, users can
provide a map encapsulating a “report” in lieu of a format string. Reports provide a mechanism for
supplying a set of structured data directly to log handlers (see below), without necessarily incurring
the cost of formatting log messages.
As with OTP, the following ordered log levels (from high to low) are supported:

• emergency

• critical

• alert

• error

• warning

• notice

• info

• debug

 AtomVM documentation, Release 0.6.6+git.db7fa169

5.4. Core APIs 39

By default, the logging facility drops any messages below notice level. To set the default log level
for the logging subsystem, see the logger_manager section, below.
You can use the logger interface directly to log messages at different levels, but in general, the OTP
logging macros are encouraged, as log events generated using the OTP macros include additional
metadata (such as the location of the log event) you do not otherwise get using the functions in
the logger module.
For example, the expression

logger:notice("Something happened that might require your attention: ~p",
 [TheThing])

may seem similar to using the ?LOG_NOTICE macro, but less contextual information will be included
in the log event.
For more information about the OTP logging facility, see the Erlang/OTP Logging chapter.

Note AtomVM does not currently support programmatic configuration of the logging subsystem. All
changes to default behavior should be done via the AtomVM logger_manager module (see below).

The logger_manager

In order to use the logger interface, you will need to first start the AtomVM logger_manager
service.

Note Future versions of AtomVM may automatically start the logging subsystem as part of a kernel
application, but currently, this service must be managed manually.

To start the logger_manager, use the logger_manager:start_link/1 function, passing in
a configuration map for the logging subsystem.
For example, the default logging framework can be started via:

{ok, _Pid} = logger_manager:start_link(#{})

Tip The logger_manager is a registered process, so the returned Pid may be ignored.

The configuration map supplied to the logger_manager may contain the following keys:
Key Type Default Description

log_level log_level() notice Primary log level

logger logger_config()
{handler, default,
logger_std_h, #{}}

Log configuration

module_level module_level() undefined
Log level specific to
a set of modules

where log_level() is defined to be:

-type log_level() :: emergency | critical | alert | error | warning | notice |
 info | debug.

and logger_config() is defined as follows:

-type handler_id() :: default | atom().
-type handler_config() :: #{
 id => atom(),
 module => module(),
 level => logger:level() | all | none,
 config => term()
}.

AtomVM documentation, Release 0.6.6+git.db7fa169

40 Chapter 5. Programmers Guide

https://www.erlang.org/doc/apps/kernel/logger_chapter.html

-type logger_config() :: [
 {handler, default, undefined} |
 {
 handler,
 HandlerId :: handler_id(),
 Handler :: module(),
 HandlerConfig :: handler_config()
 } |
 {module_level, logger:level(), [module()]}
].

You can set the log level for all log handlers by setting the log_level in this configuration map. Any
messages that are logged at levels “higher” than or equal to the configured log level will be logged by
all log handlers.
The standard logger (logger_std_h) is included by default, if no default logger is specified (and if
the default logger is not disabled – see below). The standard logger will output log events to
the console.
You can specify multiple log handlers in the logger configuration. If a log entry is allowed for
a given log level, then each log handler will handle the log message. For example, you might have
a log handler that sends messages over the network to a syslog daemon, or you might have another
handler that writes log messages to a file.
You can pass handler configuration int the config element of the handler_config() you specify
when specifying a logger. The value of the config element can be any term and is made available to
log handlers when events are logged (see below).
If the tuple {handler, default, undefined} is included in the logger configuration, the default
logger will be disabled.
At most one default logger can be specified. If you want to replace the default logger
(logger_std_h), then specify a logger with the handler id default.
You can specify different log levels for specific modules. For example, if you want to set the default
log level for all handlers to be notice or higher, you can set the log level for a given module to info,
and all info and higher messages will be logged for that module or set of modules. Conversely, you
can “quiet” a module if it is particularly noisy by setting its level to something relatively high.
For more information about how to configure the logging subsystem, see the Kernel Configuration
Parameters section of the OTP Logging chapter.
You can stop the logger_manager via the logger_manager:stop/0 function:

ok = logger_manager:stop()

Writing your own log handler

Additional loggers can be enabled via handler specifications. A handler module must implement and
export the log/2 function, which takes a log event and a term containing the configuration for
the logger handler instance.
For example:

-module(my_module).

-export([..., log/2, ...]).

log(LogEvent, HandlerConfig) ->
 %% do something with the log event
 %% return value is ignored

You can specify this handler in the logger_manager configuration (see above) via a stanza such as:

{handler, my_id, my_module, HandlerConfig}

 AtomVM documentation, Release 0.6.6+git.db7fa169

5.4. Core APIs 41

https://www.erlang.org/doc/apps/kernel/logger_chapter.html#kernel-configuration-parameters
https://www.erlang.org/doc/apps/kernel/logger_chapter.html#kernel-configuration-parameters

A LogEvent is a map structure containing the following fields:
Key Type Description

timestamp integer()
The time (in microseconds since the UNIX
epoch) at which the log event was generated

level logger:level()
The log level with which the log event was
generated

pid pid()
The process id of the Erlang process in which
the event was generated

msg
string() | {string(),
list()}

The message format and arguments passed
when the event was generated

meta map()
Metadata passed when the event was gener-
ated.

If the log event was generated using a logging macro, then the meta map also contains a location
field with the following fields:

Key Type Description

file string()
The path of the file in which the event
was generated

line non_neg_integer()
The line number in the file in which
the event was generated

mfa {module(), function_name(), arity()}
The MFA of the function in which
the event was generated

The HandlerConfig is a map structure containing the id and module of the handler and is passed
into the log handler via configuration of the logger_manager (see above).

5.4.5 Process Management

You can obtain a list of all processes in the system via erlang:processes/0:

Pids = erlang:processes().

And for each process, you can get detailed process information via the erlang:process_info/2
function:

io:format("Heap size for Pid ~p: ~p~n", [Pid, erlang:process_info(Pid,
 heap_size)]).

The return value is a tuple containing the key passed into the erlang:process_info/2 function
and its associated value.
The currently supported keys are enumerated in the following table:

Key Value Type Description

heap_size non_neg_integer()
Number of terms (in machine words) used in
the process heap

stack_size non_neg_integer()
Number of terms (in machine words) used in
the process stack

message_queue_len non_neg_integer()
Number of unprocessed messages in the process
mailbox

memory non_neg_integer()
Total number of bytes used by the process (esti-
mate)

See the word_size key in the System APIs section for information about how to find the number of
bytes used in a machine word on the current platform.

AtomVM documentation, Release 0.6.6+git.db7fa169

42 Chapter 5. Programmers Guide

5.4.6 External Term Format

The erlang:term_to_binary/1 function can be used to serialize arbitrary term data into and out
of binary data. These operations can be useful for applications that wish to share term data over some
network protocol, such as HTTP or MQTT, or wish to store serialized term data in some permanant
sttorage (e.g., Non-volatile storage on ESP32 devices).
For example, to convert a term to a binary, use erlang:term_to_binary/1, e.g.,

%% erlang
Term = ...
Binary = erlang:term_to_binary(Term),

And to convert the binary back to a term, use erlang:binary_to_term/1,2, e.g.,

%% erlang
Binary = ...
{Term, _Used} = erlang:binary_to_term(Binary, [used]),

By default, AtomVM will encode all atoms using UTF-8 encoding. This encoding is the default
encoding for OTP-26 and later releases.
For more information about Erlang external term format, consult the Erlang Documentation

5.4.7 System APIs

You can obtain system information about the AtomVM virtual machine via
the erlang:system_info/1 function, which takes an atom parameter designating the desired
datum. Allowable parameters include

• process_count The number of processes running in the system.
• port_count The number of ports running in the system.
• atom_count The number of atoms allocated in the system.
• word_size The word size (in bytes) on the current platform (typically 4 or 8).
• atomvm_version The version of AtomVM currently running (as a binary).

For example,

io:format("Atom Count: ~p~n", [erlang:system_info(atom_count)]).

Note Additional platform-specific information is supported, depending on the platform type. See
below.

Use the atomvm:platform/0 to obtain the system platform on which your code is running.
The return value of this function is an atom who’s value will depend on the platform on which your
application is running.

case atomvm:platform() of
 esp32 ->
 io:format("I am running on an ESP32!~n");
 stm32 ->
 io:format("I am running on an STM32!~n");
 generic_unix ->
 io:format("I am running on a UNIX box!~n")
end.

Use erlang:garbage_collect/0 or erlang:garbage_collect/1 to force the AtomVM
garbage collector to run on a give process. Garbage collection will in general happen automatically
when additional free space is needed and is rarely needed to be called explicitly.

 AtomVM documentation, Release 0.6.6+git.db7fa169

5.4. Core APIs 43

https://www.erlang.org/doc/apps/erts/erl_ext_dist.html

The 0-arity version of this function will run the garbage collector on the currently executing process.

Pid = ... %% get a reference to some pid
ok = erlang:garbage_collect(Pid).

Use the erlang:memory/1 function to obtain information about allocated memory.
Currently, AtomVM supports the following types:

Type Description
binary Return the total amount of memory (in bytes) occupied by (reference counted) binaries

Note Binary data small enough to be stored in the Erlang process heap are not counted in this
measurement.

5.4.8 System Time

AtomVM supports numerous function for accessing the current time on the device.
Use erlang:timestamp/0 to get the current time since the UNIX epoch (Midnight, Jan 1, 1970,
UTC), at microsecond granularity, expressed as a triple (mega-seconds, seconds, and micro-seconds):

{MegaSecs, Secs, MicroSecs} = erlang:timestamp().

Use erlang:system_time/1 to obtain the seconds, milliseconds or microseconds since the UNIX
epoch (Midnight, Jan 1, 1970, UTC):

Seconds = erlang:system_time(second).
MilliSeconds = erlang:system_time(millisecond).
MicroSeconds = erlang:system_time(microsecond).

Use erlang:monotonic_time/1 to obtain a (possibly not strictly) monotonically increasing time
measurement. Use the same time units to convert to seconds, milliseconds, or microseconds:

Seconds = erlang:monotonic_time(second).
MilliSeconds = erlang:monotonic_time(millisecond).
MicroSeconds = erlang:monotonic_time(microsecond).

Caution! Note erlang:monotonic_time/1 should not be used to calculate the wall clock time,
but instead should be used by applications to compute time differences in a manner that is inde-
pendent of the system time on the device, which might change, for example, due to NTP, leap
seconds, or similar operations that may affect the wall time on the device.

Use erlang:universaltime/0 to get the current time at second resolution, to obtain the year,
month, day, hour, minute, and second:

{{Year, Month, Day}, {Hour, Minute, Second}} = erlang:universaltime().

On some platforms, you can use the atomvm:posix_clock_settime/2 to set the system time.
Supply a clock id (currently, the only supported clock id is the atom realtime) and a time value as
a tuple, containing seconds and nanoseconds since the UNIX epoch (midnight, January 1, 1970). For
example,

SecondsSinceUnixEpoch = ... %% acquire the time
atomvm:posix_clock_settime(realtime, {SecondsSinceUnixEpoch, 0})

Warning This operation is not supported yet on the stm32 platform. On most UNIX platforms,
you typically need root permission to set the system time.

On the ESP32 platform, you can use the Wifi network to set the system time automatically. For infor-

AtomVM documentation, Release 0.6.6+git.db7fa169

44 Chapter 5. Programmers Guide

mation about how to set system time on the ESP32 using SNTP, see the Network Programming Guide.
To convert a time (in seconds, milliseconds, or microseconds from the UNIX epoch) to a date-time, use
the calendar:system_time_to_universal_time/2 function. For example,

Milliseconds = ... %% get milliseconds from the UNIX epoch
{
 {Year, Month, Day}, {Hour, Minute, Second}
} = calendar:system_time_to_universal_time(Milliseconds, millisecond).

Valid time units are second, millisecond, and microsecond.

5.4.9 Date and Time

A datetime() is a tuple containing a date and time, where a date is a tuple containing the year,
month, and day (in the Gregorian calendar), expressed as integers, and a time is an hour, minute, and
second, also expressed in integers.
The following Erlang type specification enumerates this type:

-type year() :: integer().
-type month() :: 1..12.
-type day() :: 1..31.
-type date() :: {year(), month(), day()}.
-type gregorian_days() :: integer().
-type day_of_week() :: 1..7.
-type hour() :: 0..23.
-type minute() :: 0..59.
-type second() :: 0..59.
-type time() :: {hour(), minute(), second()}.
-type datetime() :: {date(), time()}.

Erlang/OTP uses the Christian epoch to count time units from year 0 in the Gregorian calendar. The,
for example, the value 0 in Gregorian seconds represents the date Jan 1, year 0, and midnight (UTC),
or in Erlang terms, {{0, 1, 1}, {0, 0, 0}}.

Attention! AtomVM is currently limited to representing integers in at most 64 bits, with one bit
representing the sign bit. However, even with this limitation, AtomVM is able to resolve
microsecond values in the Gregorian calendar for over 292,000 years, likely well past the likely
lifetime of an AtomVM application (unless perhaps launched on a deep space probe).

The calendar module provides useful functions for converting dates to Gregorian days, and
date-times to Gregorian seconds.
To convert a date() to the number of days since January 1, year 0, use
the calendar:date_to_gregorian_days/1 function, e.g.,

GregorianDays = calendar:date_to_gregorian_days({2023, 7, 23})

To convert a datetime() to convert the number of seconds since midnight January 1, year 0, use
the calendar:datetime_to_gregorian_seconds/1 function, e.g.,

GregorianSeconds = calendar:datetime_to_gregorian_seconds({{2023, 7, 23}, {13, 31,
 7}})

Warning The calendar module does not support year values before year 0.

5.4.10 Miscellaneous APIs

Use atomvm:random/0 to generate a random unsigned 32-bit integer in the range 0..4294967295:

 AtomVM documentation, Release 0.6.6+git.db7fa169

5.4. Core APIs 45

https://en.wikipedia.org/wiki/Gregorian_calendar

RandomInteger = atomvm:random().

Use crypto:strong_rand_bytes/1 to return a randomly populated binary of a specified size:

RandomBinary = crypto:strong_rand_bytes(32).

Use base64:encode/1 and base64:decode/1 to encode to and decode from Base64 format.
The input value to these functions may be a binary or string. The output value from these functions is
an Erlang binary.

Encoded = base64:encode(<<"foo">>).
<<"foo">> = base64:decode(Encoded).

You can Use base64:encode_to_string/1 and base64:decode_to_string/1 to perform
the same encoding, but to return values as Erlang list structures, instead of as binaries.

5.4.11 StackTraces

You can obtain information about the current state of a process via stacktraces, which provide infor-
mation about the location of function calls (possibly including file names and line numbers) in your
program.
Currently in AtomVM, stack traces can be obtained in one of following ways:

• via try-catch blocks
• via catch blocks, when an error has been raised via the error Bif.

Note AtomVM does not support erlang:get_stacktrace/0 which was deprecated in Erlang
/OTP 21 and 22, stopped working in Erlang/OTP 23 and was removed in Erlang/OTP 24. Support
for accessing the current stacktrace via erlang:process_info/2 may be added in the future.

For example a stack trace can be bound to a variable in the catch clause in a try-catch block:

try
 do_something()
catch
 _Class:_Error:Stacktrace ->
 io:format("Stacktrace: ~p~n", [Stacktrace])
end

Alternatively, a stack trace can be bound to the result of a catch expression, but only when the error
is raised by the error Bif. For example,

{'EXIT', {foo, Stacktrace}} = (catch error(foo)),
io:format("Stacktrace: ~p~n", [Stacktrace])

Stack traces are printed to the console in a crash report, for example, when a process dies unexpect-
edly.
Stacktrace data is represented as a list of tuples, each of which represents a stack “frame”. Each tuple
is of the form:

[{Module :: module(), Function :: atom(), Arity :: non_neg_integer(), AuxData ::
 aux_data()}]

where aux_data() is a (possibly empty) properties list containing the following elements:

[{file, File :: string(), line, Line :: pos_integer()}]

Stack frames are ordered from the frame “closest“ to the point of failure (the “top” of the stack) to
the frame furthest from the point of failure (the “bottom” of the stack).

AtomVM documentation, Release 0.6.6+git.db7fa169

46 Chapter 5. Programmers Guide

Stack frames will contain file and line information in the AuxData list if the BEAM files (typically
embedded in AVM files) include <<“Line”>> chunks generated by the compiler. Otherwise,
the AuxData will be an empty list.

Tip Adding line information to BEAM files not only increases the size of BEAM files in storage, but
calculation of file and line information can have a non-negligible impact on memory usage. Memo-
ry-sensitive applications should consider not including line information in BEAM files.

The packbeam tool does include file and line information in the AVM files it creates by default, but
file and line information can be omitted via a command line option. For information about the pack-
beam too, see the atomvm_packbeam tool.

5.4.12 Reading data from AVM files

AVM files are generally packed BEAM files, but they can also contain non-BEAM files, such as plain
text files, binary data, or even encoded Erlang terms.
Typically, these files are included from the priv directory in a build tree, for example, when using
the atomvm_rebar3_plugin, though the atomvm_packbeam tool allow you to specify any location
for files to include in AVM files.
By convention, these files obey the following path in an AVM file:

<application-name>/priv/<file-path>

For example, if you wanted to embed my_file.txt into your application AVM file (where your
application name is, for example, my_application), you would use:

my_application/priv/my_file.txt

The atomvm:read_priv/2 function can then be used to extract the contents of this file into a binary,
e.g.,

MyFileBin = atomvm:read_priv(my_application, <<"my_file.txt">>)

Tip Embedded files may contain path separators, so for example <<"my_files/my_file.txt">>
would be used if the AVM file embeds my_file.txt using the path my_application/priv
/my_files/my_file.txt

For more information about how to embed files into AVM files, see the atomvm_rebar3_plugin,
and the atomvm_rebar3_plugin section of the AtomVM Tooling guide.

5.4.13 Code Loading

AtomVM provides a limited set of APIs for loading code and data embedded dynamically at runtime.
To load an AVM file from binary data, use the atomvm:add_avm_pack_binary/2 function. Supply
a reference to the AVM data, together with a (possibly empty) list of options. Specify a name option,
whose value is an atom, if you wish to close the AVM data at a later point in the program.
For example:

AVMData = ... %% load AVM data into memory as a binary
ok = atomvm:add_avm_pack_binary(AVMData, [{name, my_avm}])

You can also load AVM data from a file (on the generic_unix platform) or from a flash partition (on
ESP32 platforms) using the atomvm:add_avm_pack_file/2 function. Specify a string (or binary)
as the path to the AVM file, together with a list of options, such as name.
For example:

ok = atomvm:add_avm_pack_file("/path/to/file.avm", [{name, my_avm}])

On esp32 platforms, the partition name should be prefixed with the string /dev/partition

 AtomVM documentation, Release 0.6.6+git.db7fa169

5.4. Core APIs 47

https://github.com/atomvm/atomvm_rebar3_plugin
https://github.com/atomvm/atomvm_packbeam
https://github.com/atomvm/atomvm_rebar3_plugin

/by-name/. Thus, for example, if you specify /dev/partition/by-name/main2.avm as
the partition, the ESP32 flash should contain a data partition with the name main2.avm
For example:

ok = atomvm:add_avm_pack_file("/dev/partition/by-name/main2.avm", [])

To close a previous opened AVM by name, use the atomvm:close_avm_pack/2 function. Specify
the name of the AVM pack used to add

ok = atomvm:close_avm_pack(my_avm, [])

Important Currently, the options parameter is ignored, so use the empty list ([]) for forward compati-
bility.

You can load an individual BEAM file using the code:load_binary/3 function. Specify
the Module name (as an atom), as well as the BEAM data you have loaded into memory.
For Example:

BEAMData = ... %% load BEAM data into memory as a binary
{module, Module} = code:load_binary(Module, Filename, BEAMData)

Attention! The Filename parameter is currently ignored.

You can load an individual BEAM file from the file system using the code:load_abs/1 function.
Specify the path to the BEAM file. This path should not include the .beam extension, as this exten-
sion will be added automatically.
For example:

{module, Module} = code:load_abs("/path/to/beam/file/without/beam/extension")

Attention! This function is currently only supported on the generic_unix platform.

5.4.14 Math

AtomVM supports the following standard functions from the OTP math module:
• cos/1

• acos/1

• acosh/1

• asin/1

• asinh/1

• atan/1

• atan2/2

• atanh/1

• ceil/1

• cosh/1

• exp/1

• floor/1

• fmod/2

• log/1

AtomVM documentation, Release 0.6.6+git.db7fa169

48 Chapter 5. Programmers Guide

• log10/1

• log2/1

• pow/2

• sin/1

• sinh/1

• sqrt/1

• tan/1

• tanh/1

• pi/0

The input values for these functions may be float or integer types. The return value is always
a value of float type.
Input values that are out of range for the specific mathematical function or which otherwise are
invalid or yield an invalid result (e.g., division by 0) will result in a badarith error.

Attention! If the AtomVM virtual machine is built with floating point arithmetic support
disabled, these functions will result in a badarg error.

5.4.15 Cryptographic Operations

You can hash binary date using the crypto:hash/2 function.

crypto:hash(sha, [<<"Some binary">>, $\s, "data"])

This function takes a hash algorithm, which may be one of:

-type md_type() :: md5 | sha | sha224 | sha256 | sha384 | sha512.

and an IO list. The output type is a binary, who’s length (in bytes) is dependent on the algorithm
chosen:

Algorithm Hash Length (bytes)
md5 16
sha 20
sha224 32
sha256 32
sha384 64
sha512 64

Attention! The crypto:hash/2 function is currently only supported on the ESP32 and generic
UNIX platforms.

You can also use the legacy erlang:md5/1 function to compute the MD5 hash of an input binary.
The output is a fixed-length binary (16 bytes)

Hash = erlang:md5(<<foo>>).

On ESP32, you can perform symmetric encryption and decryption of any iodata data using
crypto_one_time/4,5 function.
Following ciphers are supported:
Without IV (using crypto_one_time/4):

• aes_128_ecb

 AtomVM documentation, Release 0.6.6+git.db7fa169

5.4. Core APIs 49

• aes_192_ecb

• aes_256_ecb

With IV (using crypto_one_time/5):
• aes_128_cbc

• aes_192_cbc

• aes_256_cbc

• aes_128_cfb128

• aes_192_cfb128

• aes_256_cfb128

• aes_128_ctr

• aes_192_ctr

• aes_256_ctr

The function is implemented using mbedTLS, so please to its documentation for further details.
Please refer to Erlang crypto documentation for additional details about these two functions.

Important Note: mbedTLS doesn’t support padding for ciphers other than CCB, so block size must be
accounted otherwise output will be truncated.

5.5 ESP32-specific APIs

Certain APIs are specific to and only supported on the ESP32 platform. This section describes these
APIs.

5.5.1 System-Level APIs

As noted above, the erlang:system_info/1 function can be used to obtain system-specific infor-
mation about the platform on which your application is deployed.
You can request ESP32-specific information using using the following input atoms:

• esp32_free_heap_size Returns the available free space in the ESP32 heap.
• esp32_largest_free_block Returns the size of the largest free continuous block in

the ESP32 heap.
• esp32_minimum_free_size Returns the smallest ever free space available in the ESP32 heap

since boot, this will tell you how close you have come to running out of free memory.
• esp32_chip_info Returns map of the form #{features := Features, cores :=
Cores, revision := Revision, model := Model}, where Features is a list of
features enabled in the chip, from among the following atoms: [emb_flash, bgn, ble,
bt]; Cores is the number of CPU cores on the chip; Revision is the chip version; and Model
is one of the following atoms: esp32, esp32_s2, esp32_s3, esp32_c3, etc.

• esp_idf_version Return the IDF SDK version, as a string.

For example,

FreeHeapSize = erlang:system_info(esp32_free_heap_size).

AtomVM documentation, Release 0.6.6+git.db7fa169

50 Chapter 5. Programmers Guide

https://github.com/Mbed-TLS/mbedtls
https://www.erlang.org/doc/man/crypto#crypto_one_time4

5.5.2 Non-volatile Storage

AtomVM provides functions for setting, retrieving, and deleting key-value data in binary form in
non-volatile storage (NVS) on an ESP device. Entries in NVS survive reboots of the ESP device, and
can be used a limited “persistent store” for key-value data.

Warning NVS storage is limited in size, and NVS keys are restricted to 15 characters. Try to avoid
writing frequently to NVS storage, as the flash storage may degrade more rapidly with repeated
writes to the medium.

NVS entries are stored under a namespace and key, both of which are expressed as atoms. AtomVM
uses the namespace atomvm for entries under its control. Applications may read from and write to
the atomvm namespace, but they are strongly discouraged from doing so, except when explicitly
stated otherwise.
To set a value in non-volatile storage, use the esp:nvs_set_binary/3 function, and specify
a namespace, key, and value:

Namespace = <<"my-namespace">>,
Key = <<"my-key">>,
esp:set_binary(Namespace, Key, <<"some-value">>).

To retrieve a value in non-volatile storage, use the esp:nvs_get_binary/2 function, and specify
a namespace and key. You can optionally specify a default value (of any desired type), if an entry
does not exist in non-volatile storage:

Value = esp:get_binary(Namespace, Key, <<"default-value">>).

To delete an entry, use the esp:nvs_erase_key/2 function, and specify a namespace and key:

ok = esp:erase_key(Namespace, Key).

You can delete all entries in a namespace via the esp:nvs_erase_all/1 function:

ok = esp:erase_all(Namespace).

Finally, you can delete all entries in all namespaces on the NVS partition via the esp:nvs_reformat
/0 function:

ok = esp:reformat().

Applications should use the esp:nvs_reformat/0 function with caution, in case other applications
are making using the non-volatile storage.

Caution! NVS entries are currently stored in plaintext and are not encrypted. Applications should
exercise caution if sensitive security information, such as account passwords, are stored in NVS
storage.

5.5.3 Storage

AtomVM provides support for mounting and unmounting storage on ESP32 devices, such as SD cards
or internal flash memory. This functionality is accessible through the esp:mount/4 and
esp:umount/1 functions.
Mounting MMC SD card

To mount a MMC SD card, use the esp:mount/4 function:

case esp:mount("sdmmc", "/sdcard", fat, []) of
 {ok, MountedRef} ->

 AtomVM documentation, Release 0.6.6+git.db7fa169

5.5. ESP32-specific APIs 51

 io:format("SD card mounted successfully~n"),
 {ok, MountedRef};
 {error, Reason} ->
 io:format("Failed to mount SD card: ~p~n", [Reason]),
 {error, Reason}
end.

Mounting SPI SD card

To mount a SPI SD card, first create a SPI instance configured for your specific board, then use
the esp:mount/4 function:

SPIConfig = [
 {bus_config, [
 {miso, 19},
 {mosi, 23},
 {sclk, 18},
 {peripheral, "spi3"}
]}],
SPI = spi:open(SPIConfig),
case esp:mount("sdspi", "/sdcard", fat, [{spi_host, SPI}, {cs, 5}]) of
 {ok, MountedRef} ->
 io:format("SD card mounted successfully~n"),
 {ok, MountedRef};
 {error, Reason} ->
 io:format("Failed to mount SD card: ~p~n", [Reason]),
 {error, Reason}
end.

Mounting internal flash

To mount internal flash, use the esp:mount/4 function:

case esp:mount("/dev/partition/by-name/partition_name", "/test", fat, []) of
 {ok, MountedRef} ->
 io:format("Flash mounted successfully~n"),
 {ok, MountedRef};
 {error, Reason} ->
 io:format("Failed to mount partition: ~p~n", [Reason]),
 {error, Reason}
end.

Unmounting Storage

To unmount a previously mounted storage device, use the esp:umount/1 function, with the refer-
ence returned from esp:mount/4:

case esp:umount(MountedRef) of
 ok ->
 io:format("Storage unmounted successfully~n");
 {error, Reason} ->
 io:format("Failed to unmount storage: ~p~n", [Reason])
end.

These functions allow you to work with external storage devices or partitions on your ESP32, enabling
you to read from and write to files on the mounted filesystem. This can be particularly useful for
applications that need to store or access large amounts of data that don’t fit in the device’s main
memory or non-volatile storage.

Important Remember to properly unmount any mounted filesystems before powering off or resetting
the device to prevent data corruption.

AtomVM documentation, Release 0.6.6+git.db7fa169

52 Chapter 5. Programmers Guide

5.5.4 Restart and Deep Sleep

You can use the esp:restart/0 function to immediately restart the ESP32 device. This function
does not return a value.

esp:restart().

Use the esp:reset_reason/0 function to obtain the reason for the ESP32 restart. Possible values
include:

• esp_rst_unknown

• esp_rst_poweron

• esp_rst_ext

• esp_rst_sw

• esp_rst_panic

• esp_rst_int_wdt

• esp_rst_task_wdt

• esp_rst_wdt

• esp_rst_deepsleep

• esp_rst_brownout

• esp_rst_sdio

Use the esp:deep_sleep/1 function to put the ESP device into deep sleep for a specified number of
milliseconds. Be sure to safely stop any critical processes running before this function is called, as it
will cause an immediate shutdown of the device.

esp:deep_sleep(60*1000).

Use the esp:sleep_get_wakeup_cause/0 function to inspect the reason for a wakeup. Possible
return values include:

• sleep_wakeup_ext0

• sleep_wakeup_ext1

• sleep_wakeup_timer

• sleep_wakeup_touchpad

• sleep_wakeup_ulp

• sleep_wakeup_gpio

• sleep_wakeup_uart

• sleep_wakeup_wifi

• sleep_wakeup_cocpu

• sleep_wakeup_cocpu_trag_trig

• sleep_wakeup_bt

• undefined (no sleep wakeup)
• error (unknown other reason)

The values matches the semantics of esp_sleep_get_wakeup_cause.

case esp:sleep_get_wakeup_cause() of
 sleep_wakeup_timer ->

 AtomVM documentation, Release 0.6.6+git.db7fa169

5.5. ESP32-specific APIs 53

https://docs.espressif.com/projects/esp-idf/en/release-v4.4/esp32/api-reference/system/sleep_modes.html#_CPPv426esp_sleep_get_wakeup_causev

 io:format("Woke up from a timer~n");
 sleep_wakeup_ext0 ->
 io:format("Woke up from ext0~n");
 sleep_wakeup_ext1 ->
 io:format("Woke up from ext1~n");
 _ ->
 io:format("Woke up for some other reason~n")
end.

Use the esp:sleep_enable_ext0_wakeup/2 and esp:sleep_enable_ext1_wakeup/2 func-
tions to configure ext0 and ext1 wakeup mechanisms. They follow the semantics of
esp_sleep_enable_ext0_wakeup and esp_sleep_enable_ext1_wakeup.

-spec shutdown() -> no_return().
shutdown() ->
 % Configure wake up when GPIO 37 is set to low (M5StickC main button)
 ok = esp:sleep_enable_ext0_wakeup(37, 0),
 % Deep sleep for 1 hour
 esp:deep_sleep(60*60*1000).

RTC Memory

On ESP32 systems, you can use (slow) “real-time clock” memory to store data between deep sleeps.
This storage can be useful, for example, to store interim state data in your application.

Important RTC memory is initialized if power is lost.

To store data in RTC slow memory, use the esp:rtc_slow_set_binary/1 function:

esp:rtc_slow_set_binary(<<"some binary data">>)

To retrieve data in RTC slow memory, use the esp:rtc_slow_get_binary/0 function:

Data = esp:rtc_slow_get_binary()

Caution! Calling esp:rtc_slow_get_binary/0 without having stored a binary first using
esp:rtc_slow_set_binary/1, will raise with badarg. So make sure to wrap such a call with
a try/catch or similar.

By default, RTC slow memory in AtomVM is limited to 4098 (4k) bytes. This value can be modified at
build time using an IDF SDK KConfig setting. For instructions about how to build AtomVM, see
the AtomVM Build Instructions.

5.5.5 Miscellaneous ESP32 APIs

• esp:freq_hz/0 The esp:freq_hz/0 function can be used to retrieve the clock frequency of
the chip.

• esp:partition_list/0 The esp:partition_list/0 function can be used to retrieve
information about the partitions on an ESP32 flash.

The return type is a list of tuples, each of which contains the partition id (as a binary), partition
type and sub-type (both of which are represented as integers), the start of the partition as
an address along with its size, as well as a list of properties about the partition, as a properties
list.

PartitionList = esp:partition_list(),
lists:foreach(
 fun({
 PartitionId, PartitionType, PartitionSubtype, PartitionAddress,

AtomVM documentation, Release 0.6.6+git.db7fa169

54 Chapter 5. Programmers Guide

https://docs.espressif.com/projects/esp-idf/en/release-v4.4/esp32/api-reference/system/sleep_modes.html#_CPPv428esp_sleep_enable_ext0_wakeup10gpio_num_ti
https://docs.espressif.com/projects/esp-idf/en/release-v4.4/esp32/api-reference/system/sleep_modes.html#_CPPv428esp_sleep_enable_ext1_wakeup8uint64_t28esp_sleep_ext1_wakeup_mode_t

 PartitionSize,
 PartitionProperties
 }) ->
 %% ...
 end,
 PartitionList
)

Note The partition properties are currently empty ([]).

See also

For information about the encoding of partition types and sub-types, see the IDF SDK partition
type definitions.

• esp:get_mac/1 The esp:get_mac/1 function can be used to retrieve the network Media
Access Control (MAC) address for a given interface, wifi_sta or wifi_softap. The return
value is a 6-byte binary, in accordance with the IEEE 802 family of specifications.

MacAddress = esp:get_mac(wifi_sta)

5.6 Peripherals

The AtomVM virtual machine and libraries support APIs for interfacing with peripheral devices
connected to the ESP32 and other supported microcontrollers. This section provides information
about these APIs. Unless otherwise stated the documentation for these peripherals is specific to
the ESP32, most peripherals are not yet supported on rp2040 or stm32 devices - but work is on-going
to expand support for these platforms.

5.6.1 GPIO

The GPIO peripheral has nif support on all platforms. One notable difference on the STM32 platform
is that Pin() is defined as a tuple consisting of the bank (a.k.a. port) and pin number. For example
a pin labeled PB7 on your board would be {b,7}.
You can read and write digital values on GPIO pins using the gpio module, using
the digital_read/1 and digital_write/2 functions. You must first set the pin mode using
the gpio:set_pin_mode/2 function, using input or output as the direction parameter.
Digital Read

To read the value of a GPIO pin (high or low), use gpio:digital_read/1.
For ESP32 family:

Pin = 2,
gpio:set_pin_mode(Pin, input),
case gpio:digital_read(Pin) of
 high ->
 io:format("Pin ~p is high ~n", [Pin]);
 low ->
 io:format("Pin ~p is low ~n", [Pin])
end.

For STM32 only the line with the Pin definition needs to be a tuple:

Pin = {c, 13},
gpio:set_pin_mode(Pin, input),

 AtomVM documentation, Release 0.6.6+git.db7fa169

5.6. Peripherals 55

https://docs.espressif.com/projects/esp-idf/en/v4.4.5/esp32/api-reference/storage/spi_flash.html?highlight=esp_partition_get#id13
https://en.wikipedia.org/wiki/MAC_address
https://en.wikipedia.org/wiki/IEEE_802

case gpio:digital_read(Pin) of
 high ->
 io:format("Pin ~p is high ~n", [Pin]);
 low ->
 io:format("Pin ~p is low ~n", [Pin])
end.

The Pico has an additional initialization step gpio:init/1 before using a pin for gpio:

Pin = 2,
gpio:init(Pin),
gpio:set_pin_mode(Pin, input),
case gpio:digital_read(Pin) of
 high ->
 io:format("Pin ~p is high ~n", [Pin]);
 low ->
 io:format("Pin ~p is low ~n", [Pin])
end.

Digital Write

To set the value of a GPIO pin (high or low), use gpio:digital_write/2.
For ESP32 family:

Pin = 2,
gpio:set_pin_mode(Pin, output),
gpio:digital_write(Pin, low).

For the STM32 use a pin tuple:

Pin = {b, 7},
gpio:set_pin_mode(Pin, output),
gpio:digital_write(Pin, low).

Pico needs the extra gpio:init/1 before gpio:read/1 too:

Pin = 2,
gpio:init(Pin),
gpio:set_pin_mode(Pin, output),
gpio:digital_write(Pin, low).

Interrupt Handling

Interrupts are supported on both the ESP32 and STM32 platforms. They require using the GPIO port
driver, using gpio:open/0 and gpio:set_direction/3.
You can get notified of changes in the state of a GPIO pin by using the gpio:set_int/3 function.
This function takes a reference to a GPIO instance, a Pin, and a trigger. Allowable triggers are
rising, falling, both, low, high, and none (to disable an interrupt).
When a trigger event occurs, such as a pin rising in voltage, a tuple will be delivered to the process
that set the interrupt containing the atom gpio_interrupt and the pin.

Pin = 2,
GPIO = gpio:open(),
gpio:set_direction(GPIO, Pin, input),
ok = gpio:set_int(GPIO, Pin, rising),
receive
 {gpio_interrupt, Pin} ->
 io:format("Pin ~p is rising ~n", [Pin])
end.

You can also use the gpio:set_int/4 function, and specify a listener pid() or registered name as

AtomVM documentation, Release 0.6.6+git.db7fa169

56 Chapter 5. Programmers Guide

the recipient of interrupt messages as the fourth parameter.

Pin = 2,
GPIO = gpio:open(),
gpio:set_direction(GPIO, Pin, input),
Listener = spawn(fun() -> my_gen_statem() end),
ok = gpio:set_int(GPIO, Pin, rising, Listener),
timer:sleep(infinity).

Interrupts can be removed by using the gpio:remove_int/2 function.
Use the gpio:close/1 function to close the GPIO driver and free any resources in use by it,
supplying a reference to a previously opened GPIO driver instance. Any references to the closed
GPIO instance are no longer valid after a successful call to this function, and all interrupts will be
removed.

ok = gpio:close(GPIO).

Since only one instance of the GPIO driver is allowed, you may also simply use gpio:stop/0 to
remove all interrupts, free the resources, and close the GPIO driver port.

ok = gpio:stop().

5.6.2 ESP32 ADC

The esp_adc module provides the functionality to use the ESP32 family SAR ADC peripheral to
measure (analog) voltages from a pin and obtain both raw bit values as well as calibrated voltage
values in millivolts.
The module provides two sets of APIs for using the ADC peripheral; there is a set of low level
resource based nifs, and a gen_server managed set of convenience functions. The nifs rely on unit and
channel handle resources for configuring and taking measurements. The convenience functions use
the gen_server to maintain these resources and use pin numbers to interact with the driver. Examples
for both APIs can be found the AtomVM repository atomvm/examples/erlang/esp32 directory.
A demonstration of the simple APIs is as follows:

...
 Pin = 33,
 ok = esp_adc:start(Pin, [{bitwidth, bit_12}, {atten, db_2_5}]),
 {ok, {Raw, Mv}} = esp_adc:read(Pin, [raw, voltage, {samples, 48}]),
 io:format("ADC pin ~p raw value=~p millivolts=~p~n", [Pin, Raw, Mv]),
 ok = esp_adc:stop(),
...

ESP32 ADC configuration options

Some newer ESP32 family devices only use a single fixed bit width, this is typically 12 bits, but some
provide 13 bit resolution. The ESP32 classic supports 9 bit up to 12 bit resolutions. The bitwidth
option bit_max will use the highest supported resolution for the device.
The attenuation option determines the range of voltage to be measured, the specific voltage range
for each setting varies by chip, so as always consult your devices datasheet before connecting an ADC
pin to a voltage supply to be measured. The chart below depicts the approximate safe voltage ranges
for each attenuation level:

Attenuation Min Millivolts Max Millivolts
db_0 0-100 750-950
db_2_5 0-100 1050-1250
db_6 0-150 1300-1750
db_11 | db_12 0-150 2450-2500

Consult the datasheet of your device for the exact voltage ranges supported by each attenuation level.

 AtomVM documentation, Release 0.6.6+git.db7fa169

5.6. Peripherals 57

https://en.wikipedia.org/wiki/Successive-approximation_ADC
https://github.com/atomvm/AtomVM/tree/main/examples/erlang/esp32

Warning The option db_11 has been superseded by db_12. The option db_11 and will be depre-
cated in a future release, applications should be updated to use db_12 (except for builds with
ESP-IDF versions prior to v5.2). To Continue to support older IDF version builds, the default will
remain db_11, which is the maximum tolerated voltage on all builds, as db_12 supported builds
will automatically use db_12 in place of db_11. After db_11 is deprecated in all builds (with
the sunset of ESP-IDF v5.1 support) the default will be changed to db_12.

Note For a higher degree of accuracy increase the number of sample taken, the default is 64. If highly
stable and accurate ADC measurements are required for an application you may need to connect
a bypass capacitor (e.g., a 100 nF ceramic capacitor) to the ADC input pad in use, to minimize noise.
This chart from the Espressif ADC Calibration Driver documentation shows the difference between
the use of a capacitor and without, as well as with a capacitor and multisampling of 64 samples.

You can clearly see the noisy results without a capacitor. This is mitigated by the use of multisampling
but without a decoupling capacitor results will likely still contain some noise.

When an ADC channel is configured by the use of esp_adc:acquire/2,4 or esp_adc:start
/1,2 the driver will select the optimal calibration mechanism supported by the device and channel
configuration. If neither the line fitting or curve fitting mechanisms are supported by the device using
the provided configuration options an estimated result will be used to provide voltage values,
based on the formula suggested by Espressif. For chips using the line fitting calibration scheme that
do not have the default vref efuse set, a default vref of 1100 mV is used, this is not currently settable.
ESP32 ADC read options

The read options take the form of a proplist, if the key raw is true ({raw, true} or simply appears
in the list as the atom raw), then the raw value will be returned in the first element of the returned
tuple. Otherwise, this element will be the atom undefined.
If the key voltage is true (or simply appears in the list as an atom), then a calibrated voltage value
will be returned in millivolts in the second element of the returned tuple. Otherwise, this element
will be the atom undefined.

AtomVM documentation, Release 0.6.6+git.db7fa169

58 Chapter 5. Programmers Guide

https://docs.espressif.com/projects/esp-idf/en/v5.3/esp32/api-reference/peripherals/adc_calibration.html
https://docs.espressif.com/projects/esp-idf/en/v5.3/esp32/api-reference/peripherals/adc_oneshot.html#read-conversion-result

You may specify the number of samples (1 - 100000) to be taken and averaged over using the tuple
{samples, Samples :: 1..100000}, the default is 64.

Warning Using a large number of samples can significantly increase the amount of time before
a response, up to several seconds.

5.6.3 I2C

The i2c module encapsulates functionality associated with the 2-wire Inter-Integrated Circuit (I2C)
interface.

See also

Information about the ESP32 I2C interface can be found in the IDF SDK I2C Documentation.

The AtomVM I2C implementation uses the AtomVM Port mechanism and must be initialized using
the i2c:open/1 function. The single parameter contains a properties list, with the following
elements:

Key Value Type Required Description
scl integer() yes I2C clock pin (SCL)
sda integer() yes I2C data pin (SDA)
clock_speed_hz integer() yes I2C clock frequency (in hertz)
peripheral `string() binary()` no (platform dependent default)

For example,

I2C = i2c:open([{scl, 21}, {sda, 22}, {clock_speed_hz, 40000}]),

Once the port is opened, you can use the returned I2C instance to read and write bytes to
the attached device.
Both read and write operations require the I2C bus address from which data is read or to which data
is written. A devices address is typically hard-wired for the specific device type, or in some cases may
be changed by the addition or removal of a resistor.
In addition, you may optionally specify a register to read from or write to, as some devices require
specification of a register value. Consult your device’s data sheet for more information and
the device’s I2C bus address and registers, if applicable.
There are two patterns for writing data to an I2C device:

1. Queuing i2c:write_bytes/2,3,4 write operations between calls to
i2c:begin_transmission/2 and i2c:end_transmission/1. In this case, write opera-
tions are queued locally and dispatched to the target device when
the i2c:end_transmission/1 operation is called;

2. Writing a byte or sequence of bytes in one i2c:write_bytes/2,3,4 operation.

The choice of which pattern to use will depend on the device being communicated with. For exam-
ple, some devices require a sequence of write operations to be queued and written in one atomic
write, in which case the first pattern is appropriate. E.g.,

ok = i2c:begin_transmission(I2C),
ok = i2c:qwrite_bytes(I2C, DeviceAddress, Register1, <<"some sequence of
 bytes">>),
ok = i2c:qwrite_bytes(I2C, DeviceAddress, Register2, <<"some other of bytes">>),
ok = i2c:end_transmission(I2C),

In other cases, you may just need to write a byte or sequence of bytes in one operation to the device:

 AtomVM documentation, Release 0.6.6+git.db7fa169

5.6. Peripherals 59

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/i2c.html

ok = i2c:write_bytes(I2C, DeviceAddress, Register1, <<"write it all in one go">>),

Reading bytes is more straightforward. Simply use i2c:read_bytes/3,4, specifying the port
instance, device address, optionally a register, and the number of bytes to read:

{ok, BinaryData} = i2c:read_bytes(I2C, DeviceAddress, Register, Len)

To close the I2C driver and free any resources in use by it, use the i2c:close/1 function, supplying
a reference to the I2C driver instance created via i2c:open/1:

ok = i2c:close(I2C)

Once the I2C driver is closed, any calls to i2c functions using a reference to the I2C driver instance
should return with the value {error, noproc}.

5.6.4 SPI

The spi module encapsulates functionality associated with the 4-wire Serial Peripheral Interface (SPI)
in leader mode.

See also

Information about the ESP32 SPI leader mode interface can be found in the IDF SDK SPI
Documentation.

The AtomVM SPI implementation uses the AtomVM Port mechanism and must be initialized using
the spi:open/1 function. The single parameter to this function is a properties list containing:

• bus_config – a properties list containing entries for the SPI bus
• device_config – an optional properties list containing entries for each device attached to

the SPI Bus

The bus_config properties list contains the following entries:
Key Value Type Required Description

poci (miso) integer() yes SPI peripheral-out, controller-in pin (MOSI)
pico (mosi) integer() yes SPI peripheral-in, controller-out pin (MISO)
sclk integer() yes SPI clock pin (SCLK)

The device_config entry is a properties list containing entries for each device attached to the SPI
Bus. Each entry in this list contains the user-selected name (as an atom) of the device, followed by
configuration for the named device.
Each device configuration is a properties list containing the following entries:

Key Value Type Required Description
clock_speed_hz integer() yes SPI clock frequency (in hertz)

mode 0..3 yes

SPI mode, indicating clock polarity (CPOL) and
clock phase (CPHA). Consult the SPI specification
and data sheet for your device, for more informa-
tion about how to control the behavior of the SPI
clock.

cs integer() yes SPI chip select pin (CS)

address_len_bits 0..64 yes
number of bits in the address field of a read
/write operation (for example, 8, if the transac-
tion address field is a single byte)

AtomVM documentation, Release 0.6.6+git.db7fa169

60 Chapter 5. Programmers Guide

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/spi_master.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/spi_master.html

command_len_bits 0..16 default: 0
number of bits in the command field of a read
/write operation (for example, 8, if the transac-
tion command field is a single byte)

For example,

SPIConfig = [
 {bus_config, [
 {miso, 19},
 {mosi, 27},
 {sclk, 5}
]},
 {device_config, [
 {my_device_1, [
 {clock_speed_hz, 1000000},
 {mode, 0},
 {cs, 18},
 {address_len_bits, 8}
]}
 {my_device_2, [
 {clock_speed_hz, 1000000},
 {mode, 0},
 {cs, 15},
 {address_len_bits, 8}
]}
]}
],
SPI = spi:open(SPIConfig),
...

In the above example, there are two SPI devices, one using pin 18 chip select (named my_device_1),
and once using pin 15 chip select (named my_device_2).
Once the port is opened, you can use the returned SPI instance, along with the selected device name,
to read and write bytes to the attached device.
To read a byte at a given address on the device, use the spi:read_at/4 function:

{ok, Byte} = spi:read_at(SPI, DeviceName, Address, 8)

To write a byte at a given address on the device, use the spi_write_at/5 function:

write_at(SPI, DeviceName, Address, 8, Byte)

Hint The spi:write_at/5 takes integer values as inputs and the spi:read_at/4 returns integer
values. You may read and write up to 32-bit integer values via these functions.

Consult your local device data sheet for information about various device addresses to read from or
write to, and their semantics.
The above functions are optimized for small reads and writes to an SPI device, typically one byte at
a time.
The SPI interface also supports a more generic way to read and write from an SPI device, supporting
arbitrary-length reads and writes, as well as a number of different “phases” of writes, per the SPI
specification.
These phases include:

• Command phase – write of an up-to 16-bit command to the SPI device
• Address Phase – write of an up-to 64-bit address to the SPI device
• Data Phase – read or write of an arbitrary amount of of data to and from the device.

 AtomVM documentation, Release 0.6.6+git.db7fa169

5.6. Peripherals 61

Any one of these phases may be included or omitted in any given SPI transaction.
In order to achieve this level of flexibility, these functions allow users to specify the SPI transaction
through a map structure, which includes fields that specify the behavior of an SPI transaction.
The following table enumerates the permissible fields in this structure:

Key Value Type Description

command integer() (16-bit) (Optional) SPI command. The low-order
command_len_bits are written to the device.

address integer() (64-bit) (Optional) Device address. The low-order
address_len_bits are written to the device.

write_data binary() (Optional) Data to write

write_bits non_neg_integer()
Number of bits to write from `write_data’. If not includ-
ed,then all bits will be written.

read_bits non_neg_integer()
Number of bits to read from the SPI device. If not
included, then the same number of bits will be read as
were written.

To write a blob of data to the SPI device, for example, you would use:

WriteData = <<"some binary data">>,
ok = spi:write(SPI, DeviceName, #{write_data => WriteData})

To write and simultaneously read back a blob of data to the SPI device, you would use:

{ok, ReadData} = spi:write_read(SPI, DeviceName, #{write_data => WriteData})

The size of the returned data is the same as the size of the written data, unless otherwise specified by
the read_bits field.
Use the spi:close/1 function to close the SPI driver and free any resources in use by it, supplying
a reference to a previously opened SPI driver instance. Any references to the closed SPI instance are
no longer valid after a successful call to this function.

ok = spi:close(SPI).

5.6.5 UART

The uart module encapsulates functionality associated with the Universal Asynchronous Receiver
/Transmitter (UART) interface supported on ESP32 devices. Some devices, such as NMEA GPS
receivers, make use of this interface for communicating with an ESP32.

See also

Information about the ESP32 UART interface can be found in the IDF SDK UART Documentation.

The AtomVM UART implementation uses the AtomVM Port mechanism and must be initialized using
the uart:open/2 function.
The first parameter indicates the ESP32 UART hardware interface. Valid values are:

"UART0" | "UART1" | "UART2"

The second parameter is a properties list, containing the following elements:
Key Value Type Required Default Value Description

rx integer() no -1
(UART_PIN_NO_CHANGE) RX GPIO Pin

tx integer() no -1
(UART_PIN_NO_CHANGE) TX GPIO Pin

AtomVM documentation, Release 0.6.6+git.db7fa169

62 Chapter 5. Programmers Guide

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/uart.html

speed integer() no 115200 UART baud
rate (bits/sec)

data_bits 5 | 6 | 7 | 8 no 8 UART data bits
stop_bits 1 | 2 no 1 UART stop bits

flow_control
hardware |
software | none

no none Flow control

parity
even | odd |
none

no none
UART parity
check

These are the usual RX and TX pins for the various UARTs on the ESP32 (as always check your board
specs):

Port RX pin TX pin
UART0 GPIO_3 GPIO_1
UART1 GPIO_9 GPIO_10
UART2 GPIO_16 GPIO_17

For example,

UART = uart:open("UART0", [{rx, 3}, {tx, 1}, {speed, 9600}])

Once the port is opened, you can use the returned UART instance to read and write bytes to
the attached device.
To read data from the UART channel, use the uart:read/1 function. The return value from this
function is a binary:

Bin = uart:read(UART)

To write data to the UART channel, use the uart_write/2 function. The input data is any Erlang I
/O list:

uart:write(UART, [<<"any">>, $d, $a, $t, $a, "goes", <<"here">>])

Consult your local device data sheet for information about the format of data to be read from or
written to the UART channel.
To close the UART driver and free any resources in use by it, use the uart:close/1 function,
supplying a reference to the UART driver instance created via uart:open/2:

ok = uart:close(UART)

Once the UART driver is closed, any calls to uart functions using a reference to the UART driver
instance should return with the value {error, noproc}.

5.6.6 LED Control

The LED Control API can be used to drive LEDs, as well as generate PWM signals on GPIO pins.
The LEDC API is encapsulated in the ledc module and is a direct translation of the IDF SDK LEDC
API, with a natural mapping into Erlang. This API is intended for users with complex use-cases, and
who require low-level access to the LEDC APIs.
The ledc.hrl module should be used for common modes, channels, duty cycle resolutions, and so
forth.

-include("ledc.hrl").

%% create a 5khz timer
SpeedMode = ?LEDC_HIGH_SPEED_MODE,
Channel = ?LEDC_CHANNEL_0,
ledc:timer_config([

 AtomVM documentation, Release 0.6.6+git.db7fa169

5.6. Peripherals 63

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/ledc.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/ledc.html

 {duty_resolution, ?LEDC_TIMER_13_BIT},
 {freq_hz, 5000},
 {speed_mode, ?LEDC_HIGH_SPEED_MODE},
 {timer_num, ?LEDC_TIMER_0}
]).

%% bind pin 2 to this timer in a channel
ledc:channel_config([
 {channel, Channel},
 {duty, 0},
 {gpio_num, 2},
 {speed_mode, ?LEDC_HIGH_SPEED_MODE},
 {hpoint, 0},
 {timer_sel, ?LEDC_TIMER_0}
]).

%% set the duty cycle to 0, and fade up to 16000 over 5 seconds
ledc:set_duty(SpeedMode, Channel, 0).
ledc:update_duty(SpeedMode, Channel).
TargetDuty = 16000.
FadeMs = 5000.
ok = ledc:set_fade_with_time(SpeedMode, Channel, TargetDuty, FadeMs).

5.7 Protocols

AtomVM supports network programming on devices that support it, specifically the ESP32 platform,
with its built-in support for WIFI networking, and of course on the UNIX platform.
This section describes the network programming APIs available on AtomVM.

5.7.1 Network (ESP32 only)

The ESP32 supports WiFi connectivity as part of the built-in WiFi and Bluetooth radio (and in most
modules, an integrated antenna). The WIFI radio on an ESP32 can operate in several modes:

• STA (Station) mode, whereby it acts as a member of an existing WiFi network;
• AP (Access Point) mode, whereby the ESP32 acts as an access point for other devices; or
• AP+STA mode, whereby the ESP32 behaves both as a member of an existing WiFi network and

as an access point for other devices.

AtomVM supports these modes of operation via the network module, which is used to initialize
the network and allow applications to respond to events within the network, such as a network
disconnect or reconnect, or a connection to the ESP32 from another device.

See also

Establishment and maintenance of network connections on roaming devices is a complex and subtle
art, and the AtomVM network module is designed to accommodate as many IoT scenarios as possi-
ble. This section of the programmer’s guide is deliberately brief and only addresses the most basic
scenarios. For a more detailed explanation of the AtomVM network module and its many use-cases,
please refer to the AtomVM Network Programming Guide.

STA mode

To connect your ESP32 to an existing WiFi network, use the network:wait_for_sta/1,2 conve-
nience function, which abstracts away some of the more complex details of ESP32 STA mode.
This function takes a station mode configuration, as a properties list, and optionally a timeout (in

AtomVM documentation, Release 0.6.6+git.db7fa169

64 Chapter 5. Programmers Guide

milliseconds) before connecting to the network should fail. The default timeout, if unspecified, is 15
seconds.
The station mode configuration supports the following options:

Key Value Type Required Default Value Description

ssid
string() |
binary()

yes - WiFi AP SSID

psk
string() |
binary()

yes, if network
is encrypted - WiFi AP password

dhcp_hostname
string() |
binary()

no

atomvm-<MAC>
where <MAC> is
the factory-assigned
MAC-address of
the device

DHCP hostname
for the connecting
device

Important The WiFi network to which you are connecting must support DHCP and IPv4. IPv6
addressing is not yet supported on AtomVM.

If the ESP32 device connects to the specified network successfully, the device’s assigned address,
netmask, and gateway address will be returned in an {ok, ...} tuple; otherwise, an error is
returned.
For example:

Config = [
 {ssid, <<"myssid">>},
 {psk, <<"mypsk">>},
 {dhcp_hostname, <<"mydevice">>}
],
case network:wait_for_sta(Config, 15000) of
 {ok, {Address, _Netmask, _Gateway}} ->
 io:format("Acquired IP address: ~p~n", [Address]);
 {error, Reason} ->
 io:format("Network initialization failed: ~p~n", [Reason])
end

Once connected to a WiFi network, you may begin TCP or UDP networking, as described in more
detail below.
For information about how to handle disconnections and re-connections to a WiFi network, see
the AtomVM Network Programming Guide.
AP mode

To turn your ESP32 into an access point for other devices, you can use the network:wait_for_ap
/1,2 convenience function, which abstracts away some of the more complex details of ESP32 AP
mode. When the network is started, the ESP32 device will assign itself the 192.168.4.1 address.
Any devices that connect to the ESP32 will take addresses in the 192.168.4/24 network.
This function takes an access point mode configuration, as a properties list, and optionally a timeout
(in milliseconds) before starting the network should fail. The default timeout, if unspecified, is 15
seconds.
The access point mode configuration supports the following options:

 AtomVM documentation, Release 0.6.6+git.db7fa169

5.7. Protocols 65

Key Value Type Required Default Value Description

ssid
string() |
binary()

no

atomvm-<MAC>
where <MAC> is
the factory-as-
signed MAC-ad-
dress of
the device

WiFi AP
SSID

ssid_hidden boolean() no false

Whether
the AP SSID
should be
hidden (i.e.,
not broad-
cast)

psk
string() |
binary()

yes, if
network is
encrypted

-

WiFi AP
password.
Warning: If
this option is
not speci-
fied,
the network
will be
an open
network, to
which
anyone who
knows
the SSID can
connect and
which is not
encrypted.

ap_max_connections non_neg_integer() no 4

Maximum
number of
devices that
can be
connected to
this AP

If the ESP32 device starts the AP network successfully, the ok atom is returned; otherwise, an error is
returned.
For example:

Config = [
 {psk, <<"mypsk">>}
],
case network:wait_for_ap(Config, 15000) of
 ok ->
 io:format("AP network started at 192.168.4.1~n");
 {error, Reason} ->
 io:format("Network initialization failed: ~p~n", [Reason])
end

Once the WiFi network is started, you may begin TCP or UDP networking, as described in more detail
below.
For information about how to handle connections and disconnections from attached devices, see
the AtomVM Network Programming Guide.

AtomVM documentation, Release 0.6.6+git.db7fa169

66 Chapter 5. Programmers Guide

STA+AP mode

For information about how to run the AtomVM network in STA and AP mode simultaneously, see
the AtomVM Network Programming Guide.
SNTP

For information about how to use SNTP to synchronize the clock on your device, see the AtomVM
Network Programming Guide.

5.7.2 UDP

AtomVM supports network programming using the User Datagram Protocol (UDP) via the gen_udp
module. This modules obeys the syntax and semantics of the Erlang/OTP gen_udp interface.

Attention! Not all of the Erlang/OTP gen_udp functionality is implemented in AtomVM. For
details, consult the AtomVM API documentation.

To open a UDP port, use the gen_udp:open/1,2 function. Supply a port number, and if your appli-
cation plans to receive UDP messages, specify that the port is active via the {active, true} prop-
erty in the optional properties list.
For example:

Port = 44404,
case gen_udp:open(Port, [{active, true}, binary]) of
 {ok, Socket} ->
 {ok, SockName} = inet:sockname(Socket)
 io:format("Opened UDP socket on ~p.~n", [SockName])
 Error ->
 io:format("An error occurred opening UDP socket: ~p~n", [Error])
end

If the port is active, you can receive UDP messages in your application. They will be delivered as
a 5-tuple, starting with the udp atom, and containing the socket, address and port from which
the message was sent, as well as the datagram packet, itself, as a list (by default) or a binary. To choose
the format, pass list or binary in options, as with Erlang/OTP.

receive
 {udp, _Socket, Addr, Port, Packet} ->
 io:format("Received UDP packet ~p from address ~p port ~p~n", [Packet,
 Addr, Port])
end,

With a reference to a UDP Socket, you can send messages to a target UDP endpoint using
the gen_udp:send/4 function. Specify the UDP socket returned from gen_udp:open/1,2,
the address (as a 4-tuple of octets), port number, and the datagram packet to send:

Packet = <<":?>>,
Address = {192, 168, 1, 101},
Port = 44404,
case gen_udp:send(Socket, Address, Port, Packet) of
 ok ->
 io:format("Sent ~p~n", [Packet]);
 Error ->
 io:format("An error occurred sending a packet: ~p~n", [Error])
end

Important IPv6 networking is not currently supported in AtomVM.

 AtomVM documentation, Release 0.6.6+git.db7fa169

5.7. Protocols 67

https://erlang.org/doc/man/gen_udp.html

5.7.3 TCP

AtomVM supports network programming using the Transport Connection Protocol (TCP) via
the gen_tcp module. This modules obeys the syntax and semantics of the Erlang/OTP gen_tcp
interface.

Attention! Not all of the Erlang/OTP gen_tcp functionality is implemented in AtomVM. For
details, consults the AtomVM API documentation.

Server-side TCP

Server side TCP requires opening a listening socket, and then waiting to accept connections from
remote clients. Once a connection is established, the application may then use a combination of
sending and receiving packets over the established connection to or from the remote client.

Attention! Programming TCP on the server-side using the gen_tcp interface is a subtle art, and
this portion of the documentation will not go into all of the design choices available when
designing a TCP application.

Start by opening a listening socket using the gen_tcp:listen/2 function. Specify the port number
on which the TCP server should be listening:

case gen_tcp:listen(44405, []) of
 {ok, ListenSocket} ->
 {ok, SockName} = inet:sockname(Socket),
 io:format("Listening for connections at address ~p.~n", [SockName]),
 spawn(fun() -> accept(ListenSocket) end);
 Error ->
 io:format("An error occurred listening: ~p~n", [Error])
end.

In this particular example, the server will spawn a new process to wait to accept a connection from
a remote client, by calling the gen_tcp:accept/1 function, passing in a reference to the listening
socket. This function will block until a client has established a connection with the server.
When a client connects, the function will return a tuple {ok, Socket}, where Socket is a reference
to the connection between the client and server:

accept(ListenSocket) ->
 io:format("Waiting to accept connection...~n"),
 case gen_tcp:accept(ListenSocket) of
 {ok, Socket} ->
 {ok, SockName} = inet:sockname(Socket),
 {ok, Peername} = inet:peername(Socket),
 io:format("Accepted connection. local: ~p peer: ~p~n", [SockName,
 Peername]),
 spawn(fun() -> accept(ListenSocket) end),
 echo();
 Error ->
 io:format("An error occurred accepting connection: ~p~n", [Error])
 end.

Note Note that immediately after accepting a connection, this example code will spawn a new process
to accept any new connections from other clients.

The socket returned from gen_tcp:accept/1 can then be used to send and receive messages to
the connected client:

echo() ->

AtomVM documentation, Release 0.6.6+git.db7fa169

68 Chapter 5. Programmers Guide

https://erlang.org/doc/man/gen_tcp.html

 io:format("Waiting to receive data...~n"),
 receive
 {tcp_closed, _Socket} ->
 io:format("Connection closed.~n"),
 ok;
 {tcp, Socket, Packet} ->
 {ok, Peername} = inet:peername(Socket),
 io:format("Received packet ~p from ~p. Echoing back...~n", [Packet,
 Peername]),
 gen_tcp:send(Socket, Packet),
 echo()
 end.

In this case, the server program will continuously echo the received input back to the client, until
the client closes the connection.
For more information about the gen_tcp server interface, consult the AtomVM API Reference
Documentation.
Client-side TCP

Client side TCP requires establishing a connection with an endpoint, and then using a combination of
sending and receiving packets over the established connection.
Start by opening a connection to another TCP endpoint using the gen_tcp:connect/3 function.
Supply the address and port of the TCP endpoint.
For example:

Address = {192, 168, 1, 101},
Port = 44405,
case gen_tcp:connect(Address, Port, []) of
 {ok, Socket} ->
 {ok, SockName} = inet:sockname(Socket),
 {ok, Peername} = inet:peername(Socket),
 io:format("Connected to ~p from ~p~n", [Peername, SockName]);
 Error ->
 io:format("An error occurred connecting: ~p~n", [Error])
end

Once a connection is established, you can use a combination of

SendPacket = <<":?>>,
case gen_tcp:send(Socket, SendPacket) of
 ok ->
 receive
 {tcp_closed, _Socket} ->
 io:format("Connection closed.~n"),
 ok;
 {tcp, _Socket, ReceivedPacket} ->
 {ok, Peername} = inet:peername(Socket),
 io:format("Received ~p from ~p~n", [ReceivedPacket, Peername])
 end;
 Error ->
 io:format("An error occurred sending a packet: ~p~n", [Error])
end.

For more information about the gen_tcp client interface, consults the AtomVM API documentation.

5.8 Socket Programming

AtomVM supports a subset of the OTP socket interface, giving users more fine-grained control in

 AtomVM documentation, Release 0.6.6+git.db7fa169

5.8. Socket Programming 69

https://www.erlang.org/doc/man/socket.html

socket programming.
The OTP socket APIs are relatively new (they were introduced in OTP 22 and have seen revisions in
OTP 24). These APIs broadly mirror the BSD Sockets API, and should be familiar to most program-
mers who have had to work with low-level operating system networking interfaces. AtomVM
supports a strict subset of the OTP APIs. Future versions of AtomVM may add additional coverage of
these APIs.
The following types are relevant to this interface and are referenced in the remainder of this section:

-type domain() :: inet.
-type type() :: stream | dgram.
-type protocol() :: tcp | udp.
-type socket() :: any().
-type sockaddr() :: sockaddr_in().
-type sockaddr_in() :: #{
 family := inet,
 port := port_number(),
 addr := any | loopback | in_addr()
}.
-type in_addr() :: {0..255, 0..255, 0..255, 0..255}.
-type port_number() :: 0..65535.
-type socket_option() :: {socket, reuseaddr} | {socket, linger}.

Create a socket using the socket:open/3 function, providing a domain, type, and protocol.
Currently, AtomVM supports the inet domain, stream and dgram types, and tcp and udp proto-
cols.
For example:

{ok, Socket} = socket:open(inet, stream, tcp),

5.8.1 Server-side TCP Socket Programming

To program using sockets on the server side, you can bind an opened socket to an address and port
number using the socket:bind/2 function, supplying a map that specifies the address and port
number.
This map may contain the following entries:

Key Type Default Description

family inet
The address family. (Currently, only
inet is supported)

addr in_addr() | any | loopback

The address to which to bind.
The any value will bind the socket to
all interfaces on the device.
The loopback value will bind
the socket to the loopback interface
on the device.

port port_number()

The port to which to bind the socket.
If no port is specified, the operating
system will choose a port for
the user.

For example:

PortNumber = 8080,
ok = socket:bind(Socket, #{family => inet, addr => any, port => PortNumber}),

To listen for connections, use the socket:listen/1 function:

ok = socket:listen(Socket),

AtomVM documentation, Release 0.6.6+git.db7fa169

70 Chapter 5. Programmers Guide

https://en.wikipedia.org/wiki/Berkeley_sockets

Once your socket is listening on an interface and port, you can wait to accept a connection from
an incoming client using the socket:accept/1 function.
This function will block the current execution context (i.e., Erlang process) until a client establishes
a TCP connection with the server:

{ok, ConnectedSocket} = socket:accept(Socket),

Tip Many applications will spawn processes to listen for socket connections, so that the main execu-
tion context of your application is not blocked.

5.8.2 Client-side TCP Socket Programming

To program using sockets on the client side, you can connect an opened socket to an address and port
number using the socket:connect/2 function, supplying a map that specifies the address and port
number.
This map may contain the following entries:

Key Type Default Description

family inet
The address family. (Currently, only inet is
supported)

addr
in_addr() |
loopback

The address to which to connect. The loopback
value will connect the socket to the loopback inter-
face on the device.

port port_num() The port to which to connect the socket.

ok = socket:connect(Socket, #{family => inet, addr => loopback, port => 44404})

5.8.3 Sending and Receiving Data

Once you have a connected socket (either via socket:connect/2 or socket:accept/1), you can
send and receive data on that socket using the socket:send/2 and socket:recv/1 functions.
Like the socket:accept/1 function, these functions will block until data is sent to a connected
peer (or until the data is written to operating system buffers) or received from a connected peer.
The socket:send/2 function can take a binary blob of data or an io-list, containing binary data.
For example, a process that receives data and echos it back to the connected peer might be imple-
mented as follows:

case socket:recv(ConnectedSocket) of
 {ok, Data} ->
 case socket:send(ConnectedSocket, Data) of
 ok ->
 io:format("All data was sent~n");
 {ok, Rest} ->
 io:format("Some data was sent. Remaining: ~p~n", [Rest]);
 {error, Reason} ->
 io:format("An error occurred sending data: ~p~n", [Reason])
 end;
 {error, closed} ->
 io:format("Connection closed.~n");
 {error, Reason} ->
 io:format("An error occurred waiting on a connected socket: ~p~n",
 [Reason])
end.

The socket:recv/1 function will block the current process until a packet has arrived or until
the local or remote socket has been closed, or some other error occurs.

 AtomVM documentation, Release 0.6.6+git.db7fa169

5.8. Socket Programming 71

Note that the socket:send/2 function may return ok if all of the data has been sent, or {ok,
Rest}, where Rest is the remaining part of the data that was not sent to the operating system. If
the supplied input to socket:send/2 is an io-list, then the Rest will be a binary containing the rest
of the data in the io-list.

5.8.4 Getting Information about Connected Sockets

You can obtain information about connected sockets using the socket:sockname/1 and
socket:peername/1 functions. Supply the connected socket as a parameter. The address and port
are returned in a map structure
For example:

{ok, #{addr := LocalAddress, port := LocalPort}} =
 socket:sockname(ConnectedSocket),
{ok, #{addr := PeerAddress, port := PeerPort}} = socket:peername(ConnectedSocket),

5.8.5 Closing and Shutting down Sockets

Use the socket:close/1 function to close a connected socket:

ok = socket:close(ConnectedSocket)

Attention! Data that has been buffered by the operating system may not be delivered, when
a socket is closed via the close/1 operation.

For a more controlled way to close full-duplex connected sockets, use the socket:shutdown/2
function. Provide the atom read if you only want to shut down the reads on the socket, write if you
want to shut down writes on the socket, or read_write to shut down both reads and writes on
a socket. Subsequent reads or writes on the socket will result in an einval error on the calls,
depending on how the socket has been shut down.
For example:

ok = socket:shutdown(Socket, read_write)

5.8.6 Setting Socket Options

You can set options on a socket using the socket:setopt/3 function. This function takes
an opened socket, a key, and a value, and returns ok if setting the option succeeded.
Currently, the following options are supported:

Option Key Option Value Description

{socket, reuseaddr} boolean()
Sets SO_REUSEADDR on
the socket.

{socket, linger}
#{onoff => boolean(),
linger =>
non_neg_integer()}

Sets SO_LINGER on the socket.

AtomVM documentation, Release 0.6.6+git.db7fa169

72 Chapter 5. Programmers Guide

{otp, rcvbuf} non_neg_integer()

Sets the default buffer size (in
bytes) on receive calls. This
value is only used if
the Length parameter of
the socket:recv family of
functions has the value 0;
otherwise, the specified
non-zero length in
the socket:recv takes prece-
dence. Note that the OTP
option value default is not
currently supported.

For example:

ok = socket:setopt(Socket, {socket, reuseaddr}, true),
ok = socket:setopt(Socket, {socket, linger}, #{onoff => true, linger => 0}),
ok = socket:setopt(Socket, {otp, rcvbuf}, 1024),

5.8.7 UDP Socket Programming

You can use the socket interface to send and receive messages over the User Datagram Protocol
(UDP), in addition to TCP.
To use UDP sockets, open a socket using the dgram type and udp protocol.
For example:

{ok, Socket} = socket:open(inet, dgram, udp)

To listen for UDP connections, use the socket:bind/2 function, as described above.
For example:

PortNumber = 512,
ok = socket:bind(Socket, #{family => inet, addr => any, port => PortNumber}),

Use the socket:recvfrom/1 function to receive UDP packets from clients on your network. When
a packet arrives, this function will return the received packet, as well as the address of the client that
sent the packet.
For example:

case socket:recvfrom(dSocket) of
 {ok, {From, Packet}} ->
 io:format("Received packet ~p from ~p~n", [Packet, From]);
 {error, Reason} ->
 io:format("Error on recvfrom: ~p~n", [Reason])
end;

Important The socket:recvfrom/1 function will block the current process until a packet has
arrived or until the local or remote socket has been closed, or some other error occurs.

Use the socket:sendto/3 function to send UDP packets to a specific destination. Specify
the socket, data, and destination address you would like the packet to be delivered to.
For example:

Dest = #{family => inet, addr => loopback, port => 512},
case socket:sendto(Socket, Data, Dest) of
 ok ->
 io:format("Send packet ~p to ~p.~n", [Data, Dest]);

 AtomVM documentation, Release 0.6.6+git.db7fa169

5.8. Socket Programming 73

 {ok, Rest} ->
 io:format("Send packet ~p to ~p. Remaining: ~p~n", [Data, Dest, Rest]);
 {error, Reason} ->
 io:format("An error occurred sending a packet: ~p~n", [Reason])
end

Close a UDP socket just as you would a TCP socket, as described above.

5.8.8 Miscellaneous Networking APIs

You can retrieve information about hostnames and services using the net:getaddrinfo/1 and
net:getaddrinfo/2 functions. The return value is a list of maps each of which contains address
information about the host, including its family (inet), protocol (tcp or udp), type (stream or
dgram), and the address, currently an IPv4 tuple.

Important Currently, the net:getaddrinfo/1,2 functions only supports reporting of IPv4
addresses.

For example:

{ok, AddrInfos} = net:getaddrinfo("atomvm.org"),

lists:foreach(
 fun(AddrInfo) ->
 #{
 family := Family,
 protocol := Protocol,
 type := Type,
 address := Address
 } = AddrInfo,

 io:format(
 "family: ~p protocol: ~p type: ~p address: ~p", [Family, Protocol,
 Type, Address]
)

 end,
 AddrInfos
),

The host parameter can be a domain name (typically) or a dotted pair IPv4 address.
The returned map contains the network family (currently, only inet is supported), the protocol, type,
and address of the host.
The address is itself a map, containing the family, port and IPv4 address of the requested host, e.g.,

#{family => inet, port => 0, addr => {192, 168, 212, 153}}

Note The OTP documentation states that the address is returned under the address key in
the address info map. However, OTP appears to use addr as the key. For compatibility with OTP 22
ff., AtomVM supports both the address and addr keys in this map (they reference the same inner
map).

If you want to narrow the information you get back to a specific service type, you can specify a service
name or port number (as a string value) as the second parameter:

{ok, AddrInfos} = net:getaddrinfo("atomvm.org", "https"),
...

Service names are well-known identifiers on the internet, but they may vary from operating system to

AtomVM documentation, Release 0.6.6+git.db7fa169

74 Chapter 5. Programmers Guide

https://www.erlang.org/doc/man/net#type-address_info

operating system. See the services(3) man pages for more information.

Note Narrowing results via the service parameter is not supported on all platforms. In the case where
it is not supported, AtomVM will resort to retrying the request without the service parameter.

5.9 Where to go from here

For more examples of how to use the AtomVM APIs check out the AtomVM Example Programs.
If you have not already, you may want to read the chapter on AtomVM Tooling to help you get your
applications built and flashed to a microcontroller.

 AtomVM documentation, Release 0.6.6+git.db7fa169

5.9. Where to go from here 75

https://github.com/atomvm/atomvm_examples

6 Network Programming Guide

One of the exciting features of the ESP32 and the Pico-W is their support for WiFi networking,
allowing ESP32 and Pico-W micro-controllers to communicate with the outside world over common
IP networking protocols, such as TCP or IDP. The ESP32 and the Pico-W can be configured in station
mode (STA), whereby the devices connect to an existing access point, as well as “softAP” mode (AP),
whereby they function as an access point, to which other stations can connect. The ESP32 also
supports a combined STA+softAP mode, which allows the device to function in both STA and softAP
mode simultaneously.
AtomVM provides an Erlang API interface for interacting with the WiFi networking layer on ESP32
and Pico-W devices, providing support for configuring your ESP32 or Pico-W device in STA mode,
AP mode, or a combined STA+AP mode, allowing Erlang/Elixir applications to send and receive data
from other devices on a network. This interface is encapsulated in the network module, which
implements a simple interface for connecting to existing WiFi networks or for functioning as a WiFi
access point. The same network module is used for both the ESP32 and the Pico-W.
Once the network has been set up (in STA or AP mode), AtomVM can use various socket interfaces to
interact with the socket layer to create a client or server application. For example, on ESP32, AtomVM
supports the gen_udp and gen_tcp APIs, while AtomVM extensions may support HTTP, MQTT,
and other protocols built over low-level networking interfaces.
The AtomVM networking API leverages callback functions, allowing applications to be responsive to
changes in the underlying network, which can frequently occur in embedded applications, where
devices can easily lose and then regain network connectivity. In such cases, it is important for applica-
tions to be resilient to changes in network availability, by closing or re-opening socket connections in
response to disconnections and re-connections in the underlying network.
This document describes the basic design of the AtomVM network interfaces, and how to interact
programmatically with it.

6.1 Station (STA) mode

In STA mode, the ESP32 or the Pico-W connect to an existing WiFi network.
In this case, the input configuration should be a properties list containing a tuple of the form {sta,
<sta-properties>}, where <sta-properties> is a property list containing configuration prop-
erties for the device in station mode.
The <sta-properties> property list should contain the following entries:

• {ssid, string() | binary()} The SSID to which the device should connect.
• {psk, string() | binary()} The password required to authenticate to the network, if

required.

The network:start/1 will immediately return {ok, Pid}, where Pid is the process ID of
the network server instance, if the network was properly initialized, or {error, Reason}, if there
was an error in configuration. However, the application may want to wait for the device to connect to
the target network and obtain an IP address, for example, before starting clients or services that
require network access.
Applications can specify callback functions, which get triggered as events emerge from the network
layer, including connection to and disconnection from the target network, as well as IP address acqui-
sition.
Callback functions can be specified by the following configuration parameters:

• {connected, fun(() -> term())} A callback function which will be called when
the device connects to the target network.

AtomVM documentation, Release 0.6.6+git.db7fa169

76 Chapter 6. Network Programming Guide

• {disconnected, fun(() -> term())} A callback function which will be called when
the device disconnects from the target network.

• {got_ip, fun((ip_info()) -> term())} A callback function which will be called when
the device obtains an IP address. In this case, the IPv4 IP address, net mask, and gateway are
provided as a parameter to the callback function.

Warning IPv6 addresses are not yet supported in AtomVM.

Callback functions are optional, but are highly recommended for building robust WiFi applications.
The return value from callback functions is ignored, and AtomVM provides no guarantees about
the execution context (i.e., BEAM process) in which these functions are invoked.
In addition, the following optional parameters can be specified to configure the AP network (ESP32
only):

• {dhcp_hostname, string()|binary()} The DHCP hostname as which the device should
register (<<"atomvm-<hexmac>">>, where <hexmac> is the hexadecimal representation of
the factory-assigned MAC address of the device).

• {beacon_timeout, fun(() -> term())} A callback function which will be called when
the device does not receive a beacon frame from the connected access point during the “inactive
time” (6 second default, currently not configurable).

The following example illustrates initialization of the WiFi network in STA mode. The example
program will configure the network to connect to a specified network. Events that occur during
the lifecycle of the network will trigger invocations of the specified callback functions.

Config = [
 {sta, [
 {ssid, <<"myssid">>},
 {psk, <<"mypsk">>},
 {connected, fun connected/0},
 {got_ip, fun got_ip/1},
 {disconnected, fun disconnected/0}
 {dhcp_hostname, <<"myesp32">>}
]}
],
{ok, Pid} = network:start(Config),
...

The following callback functions will be called when the corresponding events occur during the life-
time of the network connection.

connected() ->
 io:format("Connected to AP.~n").

gotIp(IpInfo) ->
 io:format("Got IP: ~p~n", [IpInfo]).

disconnected() ->
 io:format("Disconnected from AP.~n").

In a typical application, the network should be configured and an IP address should be acquired first,
before starting clients or services that have a dependency on the network.

6.1.1 STA Mode Convenience Functions

The network module supports the network:wait_for_sta/1,2 convenience functions for appli-
cations that do not need robust connection management. These functions are synchronous and will
wait until the device is connected to the specified AP. Supply the properties list specified in
the {sta, [...]} component of the above configuration, in addition to an optional timeout (in

 AtomVM documentation, Release 0.6.6+git.db7fa169

6.1. Station (STA) mode 77

milliseconds).
For example:

Config = [
 {ssid, <<"myssid">>},
 {psk, <<"mypsk">>},
 {dhcp_hostname, <<"mydevice">>}
],
case network:wait_for_sta(Config, 15000) of
 {ok, {Address, _Netmask, _Gateway}} ->
 io:format("Acquired IP address: ~p~n", [Address]);
 {error, Reason} ->
 io:format("Network initialization failed: ~p~n", [Reason])
end

To obtain the signal strength (in decibels) of the connection to the associated access point use
network:sta_rssi/0.

6.2 AP mode

In AP mode, the ESP32 starts a WiFi network to which other devices (laptops, mobile devices, other
ESP32 devices, etc) can connect. The ESP32 will create an IPv4 network, and will assign itself
the address 192.168.4.1. Devices that attach to the ESP32 in AP mode will be assigned sequential
addresses in the 192.168.4.0/24 range, e.g., 192.168.4.2, 192.168.4.3, etc.
To initialize the ESP32 device in AP mode, the input configuration should be a properties list
containing a tuple of the form {ap, <ap-properties>}, where <ap-properties> is a property
list containing configuration properties for the device in AP mode.
The <ap-properties> property list may contain the following entries:

• {ssid, string() | binary()} The SSID to which the device should connect.
• {psk, string() | binary()} The password required to authenticate to the network, if

required. Note that this password must be a minimum of 8 characters.
• {ap_channel, wifi_channel()} The channel the access point should use.

If the SSID is omitted in configuration, the SSID name atomvm-<hexmac> will be created, where
<hexmac> is the hexadecimal representation of the factory-assigned MAC address of the device. This
name should be sufficiently unique to disambiguate it from other reachable ESP32 devices, but it may
also be difficult to read or remember.
If the password is omitted, then an open network will be created, and a warning will be printed to
the console. Otherwise, the AP network will be started using WPA+WPA2 authentication.
If the channel is omitted the default chanel for esp32 is 1. This setting is only used while a device is
operation is AP mode only. If ap_channel is configured, it will be temporarily changed to match
the associated access point if AP + STA mode is used and the station is associated with an access
point. This is a hardware limitation due to the modem radio only being able to operate on a single
channel (frequency) at a time.
The network:start/1 will immediately return {ok, Pid}, where Pid is the process id of
the network server, if the network was properly initialized, or {error, Reason}, if there was
an error in configuration. However, the application may want to wait for the device to to be ready to
accept connections from other devices, or to be notified when other devices connect to this AP.
Applications can specify callback functions, which get triggered as events emerge from the network
layer, including when a station connects or disconnects from the AP, as well as when a station is
assigned an IP address.
Callback functions can be specified by the following configuration parameters:

• {ap_started, fun(() -> term())} A callback function which will be called when the AP

AtomVM documentation, Release 0.6.6+git.db7fa169

78 Chapter 6. Network Programming Guide

endpoint has started and is ready to be connected to.
• {sta_connected, fun((Mac::binary()) -> term())} A callback function which will

be called when a device connects to the AP. The MAC address of the connected station, as
a 6-byte binary, is passed to the callback function.

• {sta_disconnected, fun((Mac::binary()) -> term())} A callback function which
will be called when a device disconnects from the AP. The MAC address of the disconnected
station, as a 6-byte binary, is passed to the callback function.

• {sta_ip_assigned, fun((ipv4_address()) -> term())} A callback function which
will be called when the AP assigns an IP address to a station. The assigned IP address is passed
to the callback function.

Warning IPv6 addresses are not yet supported in AtomVM.

Callback functions are completely optional, but are highly recommended for building robust WiFi
applications. The return value from callback functions is ignored, and AtomVM provides no guaran-
tees about the execution context (i.e., BEAM process) in which these functions are invoked.
In addition, the following optional parameters can be specified to configure the AP network:

• {ssid_hidden, boolean()} Whether the AP network should be not be broadcast (false, by
default)

• {max_connections, non_neg_integer()} The maximum number of devices that can
connect to this network (by default, 4)

The following example illustrates initialization of the WiFi network in AP mode. The example
program will configure the network to connect to start a WiFi network with the name myssid and
password mypsk. Events that occur during the lifecycle of the network will trigger invocations of
the specified callback functions.

Config = [
 {ap, [
 {ssid, <<"myssid">>},
 {psk, <<"mypsk">>},
 {ap_started, fun ap_started/0},
 {sta_connected, fun sta_connected/1},
 {sta_ip_assigned, fun sta_ip_assigned/1},
 {sta_disconnected, fun sta_disconnected/1},
]}
],
{ok, Pid} = network:start(Config),
...

The following callback functions will be called when the corresponding events occur during the life-
time of the network connection.

ap_started() ->
 io:format("AP started.~n").

sta_connected(Mac) ->
 io:format("STA connected with mac ~p~n", [Mac]).

sta_disconnected(Mac) ->
 io:format("STA disconnected with mac ~p~n", [Mac]).

sta_ip_assigned(Address) ->
 io:format("STA assigned address ~p~n", [Address]).

In a typical application, the network should be configured and the application should wait for the AP
to report that it has started, before starting clients or services that have a dependency on the network.

 AtomVM documentation, Release 0.6.6+git.db7fa169

6.2. AP mode 79

6.2.1 AP Mode Convenience Functions

The network module supports the network:wait_for_ap/1,2 convenience functions for applica-
tions that do not need robust connection management. These functions are synchronous and will
wait until the device is successfully starts an AP. Supply the properties list specified in the {ap,
[...]} component of the above configuration, in addition to an optional timeout (in milliseconds).
For example:

Config = [
 {psk, <<"mypsk">>}
],
case network:wait_for_ap(Config, 15000) of
 ok ->
 io:format("AP network started at 192.168.4.1~n");
 {error, Reason} ->
 io:format("Network initialization failed: ~p~n", [Reason])
end

6.3 STA+AP mode

The network module can be started in both STA and AP mode. In this case, the ESP32 device will
both connect to an access point in its STA mode, and will simultaneously serve as an access point in
its role in AP mode.
In order to enable both STA and AP mode, simply provide valid configuration for both modes in
the configuration structure supplied to the network:start/1 function.

6.4 SNTP Support

You may configure the networking layer to automatically synchronize time on the ESP32 with an NTP
server accessible on the network.
To synchronize time with an NTP server, add a property list with the tag sntp at the top level config-
uration passed into the network:start/1 function. Specify the NTP hostname or IP address with
which your device should sync using the host property tag. The host value can be a string or
binary.
You can also specify a callback function that will get called when the clock is synchronized with
the SNTP server via the synchronized property tag. This function takes a tuple with the updated
time in seconds and microseconds.
For example:

{sntp, [
 {host, <<"pool.ntp.org">>},
 {synchronized, fun sntp_synchronized/1}
]}

where the sntp_synchronized/1 function is defined as:

sntp_synchronized({TVSec, TVUsec}) ->
 io:format("Synchronized time with SNTP server. TVSec=~p TVUsec=~p~n", [TVSec,
 TVUsec]).

Note The device must be in STA mode and connected to an access point in order to use an SNTP
server on your network or on the internet.

AtomVM documentation, Release 0.6.6+git.db7fa169

80 Chapter 6. Network Programming Guide

6.5 NVS Credentials

It can become tiresome to enter an SSID and password for every application, and in general it is bad
security practice to hard-wire WiFi credentials in your application source code.
You may instead store an STA or AP SSID and PSK in non-volatile storage (NVS) on and ESP32 device.

Caution! Credentials are stored un-encrypted and in plaintext and should not be considered
secure. Future versions may use encrypted NVS storage.

6.6 Stopping the Network

To stop the network and free any resources in use, issue the stop/0 function:

network:stop().

Caution! Stop is currently unimplemented.

 AtomVM documentation, Release 0.6.6+git.db7fa169

6.5. NVS Credentials 81

7 Build Instructions

This guide is intended for anyone interested in building the AtomVM virtual machine from source
code. You may be interested in building the AtomVM source code if you want to provide bug fixes or
enhancements to the VM, or if you want to simply learn more about the platform. In addition, some
“downstream” drivers for specific devices may need to be built specifically for the target platform
(e.g., ESP32), in which case building the VM from source code is required.

Tip Many applications do not require building the AtomVM runtime from source code. Instead, you
can download pre-built VM images for platforms such as ESP32, and use Erlang and Elixir tooling to
build and deploy your applications.

The AtomVM virtual machine itself, including the runtime code execution engine, as well as built-in
functions and Nifs is implemented in C. The core standard and AtomVM libraries are implemented
in Erlang and Elixir.
The native C parts of AtomVM compile to machine code on MacOS, Linux, and FreeBSD platforms.
The C code also compiles to run on the ESP32 and STM32 platforms. Typically, binaries for these plat-
forms are created on a UNIX-like environment (MacOS or Linux, currently) using tool-chains
provided by device vendors to cross-compile and target specific device architectures.
The Erlang and Elixir parts are compiled to BEAM byte-code using the Erlang (erlc) and Elixir
compilers. For information about specific versions of required software, see the Release Notes.
This guide provides information about how to build AtomVM for the various supported platforms
(Generic UNIX, ESP32, and STM32).

Attention! In order to build AtomVM AVM files for ESP32 and STM32 platforms, you will also
need to build AtomVM for the Generic UNIX platform of your choice.

7.1 Downloading AtomVM

The AtomVM source code is available by cloning the AtomVM github repository:

$ git clone https://github.com/atomvm/AtomVM

See also

Downloading the AtomVM github repository requires the installation of the git program. Consult
your local OS documentation for installation of the git package.

If you want to build a release version of AtomVM, simply checkout the desired release:

$ git checkout v0.6.0-alpha.2

Tip You may need to refresh the tags if you have already cloned the repository and you want to build
a more recent release version.

$ git pull --tags --rebase

The use of --rebase is necessary if you are in a working branch and have made commits, otherwise
it is optional.

To return to the current master branch use git switch master.

AtomVM documentation, Release 0.6.6+git.db7fa169

82 Chapter 7. Build Instructions

https://github.com/atomvm/AtomVM/releases

7.2 Source code organization

Source code is organized as follows:
• src Contains the core AtomVM virtual machine source code;
• lib Contains the Erlang and Elixir core library source code;
• tools Contains AtomVM tooling, including the PackBEAM executable, as well as build support

tooling;
• examples Contains sample programs for demonstration purposes;
• tests Contains test code run as part of test qualification;
• doc Contains documentation source code and content.

The src directory is broken up into the core platform-independent AtomVM library (libAtomVM),
and platform-dependent code for each of the supported platforms (Generic UNIX, ESP32, and
STM32).

7.3 Platform Specific Build Instructions

• Generic UNIX
• ESP32
• STM32
• Raspberry Pi Pico (rp2040)
• WASM (NodeJS or web)

7.4 Building for Generic UNIX

The following instructions apply to unix-like environments, including Linux, FreeBSD, DragonFly and
MacOS.

Hint The Generic UNIX is useful for running and testing simple AtomVM programs. Not all of
the AtomVM APIs, specifically, APIs that are dependent on various device integration, are supported
on this platform.

7.4.1 Generic UNIX Build Requirements

The following software is required in order to build AtomVM in generic UNIX systems:
• gcc or llvm tool chains
• cmake

• make

• gperf

• zlib

• Mbed TLS

• Erlang/OTP compiler (erlc)

 AtomVM documentation, Release 0.6.6+git.db7fa169

7.2. Source code organization 83

• Elixir compiler

Consult Release Notes for currently supported versions of required software.
Consult your local OS documentation for instructions about how to install these components.

7.4.2 Generic UNIX Build Instructions

The AtomVM build for generic UNIX systems makes use of the cmake tool for generating make files
from the top level AtomVM directory. With CMake, you generally create a separate directory for all
output files (make files, generated object files, linked binaries, etc). A common pattern is to create
a local build directory, and then point cmake to the parent directory for the root of the source tree:

$ mkdir build
$ cd build
$ cmake ..

This command will create all of the required make files for creating the AtomVM binary, tooling, and
core libraries. You can create all of these object using the make command:

$ make -j 8

Tip You may specify -j <n>, where <n> is the number of CPUs you would like to assign to run
the build in parallel.

Upon completion, the AtomVM executable can be found in the build/src directory.
The AtomVM core Erlang library can be found in the generated libs/atomvmlib.avm AVM file.
Use the install target to install the atomvm command and associated binary files. On most UNIX
systems, these artifacts will be installed in the /usr/local directory tree.

Attention! On some systems, you may need to run this target with root or sudo permissions.

$ sudo make install

Once installed, you can use the atomvm command to execute an AtomVM application. E.g.,

$ atomvm /path/to/myapp.avm

For users doing incremental development on the AtomVM virtual machine, you may want to run
the AtomVM binary directly instead of installing the VM on your machine. If you do, you will typi-
cally need to also specify the path to the AtomVM core Erlang library. For example,

$ cd build
$./src/AtomVM /path/to/myapp.avm ./libs/atomvmlib.avm

Special Note for MacOS users

You may build an Apple Xcode project, for developing, testing, and debugging in the Xcode IDE, by
specifying the Xcode generator. For example, from the top level AtomVM directory:

$ mkdir xcode
$ cmake -G Xcode ..
...
$ open AtomVM.xcodeproj

The above commands will build and open an AtomVM project in the Xcode IDE.

7.4.3 Running tests

There are currently two sets of suites of tests for AtomVM:

AtomVM documentation, Release 0.6.6+git.db7fa169

84 Chapter 7. Build Instructions

• Erlang tests (erlang_tests) A set of unit tests for basic Erlang functionality, exercising support
BEAM opcodes, built-in functions (Bifs) and native functions (Nifs).

• Library tests, exercising functionality in the core Erlang and Elixir libraries.

To run the Erlang tests, run the test-erlang executable in the tests directory:

$./tests/test-erlang

This will run a suite of several score unit tests. Check the status of the executable after running
the tests. A non-zero return value indicates a test failure.
To run the Library tests, run the corresponding AVM module in the tests/libs directory using
the AtomVM executable. For example:

$./src/AtomVM ./tests/libs/estdlib/test_estdlib.avm

This will run a suite of several unit tests for the specified library. Check the status of the executable
after running the tests. A non-zero return value indicates a test failure.
Tests for the following libraries are supported:

• estdlib

• eavmlib

• alisp

7.5 Building for ESP32

Building AtomVM for ESP32 must be done on either a Linux or MacOS build machine.
In order to build a complete AtomVM image for ESP32, you will also need to build AtomVM for
the Generic UNIX platform (typically, the same build machine you are suing to build AtomVM for
ESP32).

7.5.1 ESP32 Build Requirements

The following software is required in order to build AtomVM for the ESP32 platform:
• Espressif Xtensa tool chains
• Espressif IDF SDK (consult Release Notes for currently supported versions)
• cmake

Instructions for downloading and installing the Espressif IDF SDK and tool chains are outside of
the scope of this document. Please consult the IDF SDKGetting Started guide for more information.

7.5.2 ESP32 Build Instructions

To activate the ESP-IDF build environment change directories to the tree root of your local ESP-IDF:

$ cd <ESP-IDF-ROOT-DIR>
$. ./export.sh

Hint If you followed Espressif’s installation guide the ESP-IDF directory is ${HOME}/esp/esp-idf

Change directories to the src/platforms/esp32 directory under the AtomVM source tree root:

$ cd <atomvm-source-tree-root>
$ cd src/platforms/esp32

 AtomVM documentation, Release 0.6.6+git.db7fa169

7.5. Building for ESP32 85

https://www.espressif.com/en/products/sdks/esp-idf
https://docs.espressif.com/projects/esp-idf/en/release-v4.4/get-started/index.html

If you want to build an image with Elixir modules included you must first have a version of Elixir
installed that is compatible with your OTP version, then add the following line to sdkconfig.defaults:

CONFIG_PARTITION_TABLE_CUSTOM_FILENAME="partitions-elixir.csv"

Start by updating the default build configuration of local sdkconfig file via the idf.py
reconfigure command:

$ idf.py set-target esp32
$ idf.py reconfigure

Tip For those familiar with esp-idf the build can be customized using menuconfig instead of
reconfigure:

$ idf.py menuconfig

This command will bring up a curses dialog box where you can make adjustments such as not
including AtomVM components that are not desired in a particular build. You can also change
the behavior of a crash in the VM to print the error and reboot, or halt after the error is printed.
Extreme caution should be used when changing any non AtomVM settings. You can quit the program
by typing Q. Save the changes, and the program will exit.

You can now build AtomVM using the build command:

$ idf.py build

This command, once completed, will create the Espressif bootloader, partition table, and AtomVM
binary. The last line of the output should read something like the following:

Project build complete. To flash, run this command:
~/.espressif/python_env/idf5.1_py3.11_env/bin/python ~/esp/esp-idf-v5.1/components
/esptool_py/esptool/esptool.py -p (PORT) -b 921600 --before default_reset
--after hard_reset --chip esp32 write_flash --flash_mode dio --flash_size detect
--flash_freq 40m 0x1000 build/bootloader/bootloader.bin 0x8000
build/partition_table/partition-table.bin 0x10000 build/atomvm-esp32.bin
or run 'idf.py -p (PORT) flash'

At this point, you can run idf.py flash to upload the 3 binaries up to your ESP32 device, and in
some development scenarios, this is a preferable shortcut.
However, first, we will build a single binary image file containing all of the above 3 binaries, as well as
the AtomVM core libraries. See Building a Release Image, below. But first, it is helpful to understand
a bit about how the AtomVM partitioning scheme works, on the ESP32.

7.5.3 Running tests for ESP32

Tests for ESP32 are run on the desktop (or CI) using qemu.
Install or compile Espressif’s fork of qemu. Espressif provides binaries for Linux amd64 and it’s also
bundled in espressif/idf:5.1 docker image.
Also install Espressif pytest’s extensions for embedded testing with:

$ cd <ESP-IDF-ROOT-DIR>
$. ./export.sh
$ pip install pytest==7.0.1 \
 pytest-embedded==1.2.5 \
 pytest-embedded-serial-esp==1.2.5 \
 pytest-embedded-idf==1.2.5 \
 pytest-embedded-qemu==1.2.5

Change directory to the src/platforms/esp32/test directory under the AtomVM source tree
root:

AtomVM documentation, Release 0.6.6+git.db7fa169

86 Chapter 7. Build Instructions

https://github.com/espressif/esp-toolchain-docs/blob/main/qemu/README.md
https://github.com/espressif/qemu/releases
https://hub.docker.com/r/espressif/idf

$ cd <atomvm-source-tree-root>
$ cd src/platforms/esp32/test

Build tests using the build command:

$ idf.py build

Note This eventually compiles host AtomVM to be able to build and pack erlang test modules.

Run tests using the command:

$ pytest --embedded-services=idf,qemu -s

ESP32 tests are erlang modules located in src/platforms/esp32/test/main
/test_erl_sources/ and executed from src/platforms/esp32/test/main/test_main.c.

7.5.4 Flash Layout

The AtomVM Flash memory is partitioned to include areas for the above binary artifacts created from
the build, as well areas for runtime information used by the ESP32 and compiled Erlang/Elixir code.
The flash layout is roughly as follows (not to scale):

+-----------------+ ------------- 0x0 | 0x1000 | 0x2000
| | ^
| boot loader | 28KB |
| | |
+-----------------+ |
| partition table | 3KB |
+-----------------+ |
NVS	24KB
+-----------------+	
PHY_INIT	4KB
+-----------------+	AtomVM
AtomVM	
Virtual	1.75MB
Machine	
+-----------------+	
boot.avm	256-512KB v
+-----------------+ ------------- 0x210000 for Erlang only images or	
	^ 0x250000 for images with Elixir modules
main.avm	1MB+
	v
+-----------------+ ------------- end

The following table summarizes the partitions created on the ESP32 when deploying AtomVM:
Partition Offset Length Description

Bootloader 0x0 | 0x1000 |
0x2000 28kB

The ESP32 bootloader, as built from
the IDF-SDK. AtomVM does not define its own
bootloader. The offset of the bootloader varies by
chip.

 AtomVM documentation, Release 0.6.6+git.db7fa169

7.5. Building for ESP32 87

Partition Table 0x8000 3kB The AtomVM-defined partition table.
NVS 0x9000 24kB Space for non-volatile storage.

PHY_INIT 0xF000 4kB Initialization data for physical layer radio signal
data.

AtomVM virtual
machine 0x10000 1.75mB The AtomVM virtual machine (compiled from C

code).

boot.avm 0x1D0000 256k
The AtomVM BEAM library, compiled from
Erlang and Elixir files in the AtomVM source
tree.

main.avm 0x210000 |
0x250000

1mB The user application. This is where users flash
their compiled Erlang/Elixir code

Warning There is an important difference in the partition layout between the minimal images and
those build with Elixir support. To accommodate the extra Elixir modules the boot.avm partition
on these images is larger, and the application offset is moved accordingly. When working with
Elixir supported images it is important to always use the offset 0x250000 whether using mix or
the atomvm_rebar3_plugin (possibly to test an Erlang app), otherwise part of the boot.avm
partition (specifically the area where many Elixir modules are located) will be overwritten with
the application, but the VM will still be trying to load from the later 0x250000 offset. This should
be kept in mind reading the rest of build instructions, and AtomVM Tooling sections of the docs
that cover the use of rebar3, for these sections an Erlang only image is assumed.

7.5.5 The boot.avm and main.avm partitions

The boot.avm and main.avm partitions are intended to store Erlang/Elixir libraries (compiled down
to BEAM files, and assembled as AVM files).
The boot.avm partition is intended for core Erlang/Elixir libraries that are built as part of
the AtomVM build. The release image of AtomVM (see below) includes both the AtomVM virtual
machine and the boot.avm partition, which includes the BEAM files from the estdlib and
eavmlib libraries.
In contrast, the main.avm partition is intended for user applications. Currently, the main.avm parti-
tion starts at address 0x210000 for thin images or 0x250000 for images with Elixir modules, and it
is to that location to which application developers should flash their application AVM files.
The AtomVM search path for BEAM modules starts in the main.avm partition and falls back to
boot.avm. Users should not have a need to override any functionality in the boot.avm partition,
but if necessary, a BEAM module of the same name in the main.avm partition will be loaded instead
of the version in the boot.avm partition.

Warning The location of the main.avm partition may change over time, depending on the relative
sizes of the AtomVM binary and boot.avm partitions.

7.5.6 Building a Release Image

The <atomvm-source-tree-root>/tools/release/esp32 directory contains the mkimage.sh
script that can be used to create a single AtomVM image file, which can be distributed as a release,
allowing application developers to develop AtomVM applications without having to build AtomVM
from scratch.

Attention! Before running the mkimage.sh script, you must have a complete build of both
the esp32 project, as well as a full build of the core Erlang libraries in the libs directory.
The script configuration defaults to assuming that the core Erlang libraries will be written to
the build/libs directory in the AtomVM source tree. You should pass the --build_dir
<path> option to the mkimage.sh script, with <path> pointing to your AtomVM build direc-

AtomVM documentation, Release 0.6.6+git.db7fa169

88 Chapter 7. Build Instructions

tory, if you target a different build directory when running CMake.

Running this script will generate a single atomvm-<sha>.img file in the build directory of
the esp32 source tree, where <sha> is the git hash of the current checkout. This image contains
the ESP32 bootloader, AtomVM executable, and the eavmlib and estdlib Erlang libraries in one
file, which can then be flashed to address 0x1000 for the esp32. The bootloader address varies for
other chip variants. See the flashing a binary image to ESP32 section of the Getting Started Guide for
a chart with the bootloader offset address of each model.
To build a thin image with only Erlang libraries mkimage.sh script is run from the src/platform
/esp32 directory as follows:

$./build/mkimage.sh
Writing output to /home/joe/AtomVM/src/platforms/esp32/build/atomvm-esp32.img
===
Wrote bootloader at offset 0x1000 (4096)
Wrote partition-table at offset 0x8000 (32768)
Wrote AtomVM Virtual Machine at offset 0x10000 (65536)
Wrote AtomVM Core BEAM Library at offset 0x1D0000 (1114112)

To build a full image with Erlang and Elixir libraries the path to the previously (during the gener-
ic_unix build) built elixir_esp32boot.avm must be passed to the mkimage.sh script as follows
(Note: this is still run from the AtomVM/src/platforms/esp32 directory for the relative path to work -
feel free to use the absolute path to this file):

$./build/mkimage.sh --boot ../../../build/libs/esp32boot/elixir_esp32boot.avm
Writing output to /home/joe/AtomVM/src/platforms/esp32/build/atomvm-esp32.img
===
Wrote bootloader at offset 0x1000 (4096)
Wrote partition-table at offset 0x8000 (32768)
Wrote AtomVM Virtual Machine at offset 0x10000 (65536)
Wrote AtomVM Core BEAM Library at offset 0x1D0000 (1114112)

Users can then use the esptool.py directly to flash the entire image to the ESP32 device, and then
flash their applications to the main.app partition at address 0x210000, (or 0x250000 for Elixir
images)
But first, it is a good idea to erase the flash, e.g.,

$ esptool.py --chip esp32 --port /dev/ttyUSB0 erase_flash
esptool.py v2.1
Connecting........_
Chip is ESP32D0WDQ6 (revision 1)
Uploading stub...
Running stub...
Stub running...
Erasing flash (this may take a while)...
Chip erase completed successfully in 5.4s
Hard resetting...

Flashing Release Images

After preparing a release image you can use the flashimage.sh, which is generated with each build
that will flash the full image using the correct flash offset for the chip the build was configured for
using the either the default Erlang only partitions.cvs table, or the partitions-elixir.cvs
table if that was used during the configuration.

$./build/flashimage.sh

To perform this action manually you can use the ./build/flash.sh tool (or esptool.py directly,
if you prefer):

$ FLASH_OFFSET=0x1000 ./build/flash.sh ./build/atomvm-esp32-0.6.6.img

 AtomVM documentation, Release 0.6.6+git.db7fa169

7.5. Building for ESP32 89

esptool.py v2.8-dev
Serial port /dev/tty.SLAB_USBtoUART
Connecting........_
Chip is ESP32D0WDQ6 (revision 1)
Features: WiFi, BT, Dual Core, Coding Scheme None
Crystal is 40MHz
MAC: 30:ae:a4:1a:37:d8
Uploading stub...
Running stub...
Stub running...
Changing baud rate to 921600
Changed.
Configuring flash size...
Auto-detected Flash size: 4MB
Wrote 1163264 bytes at 0x00001000 in 15.4 seconds (603.1 kbit/s)...
Hash of data verified.
Leaving...
Hard resetting via RTS pin...

Caution! Flashing the full AtomVM image will delete all entries in non-volatile storage. Only
flash the full image if you have a way to recover and re-write any such data, if you need to retain
it.

7.5.7 Flashing Applications

Applications can be flashed using the flash.sh script in the esp32 build directory (the application
offset is set correctly depending on the build configuration):

$./build/flash.sh ../../../build/examples/erlang/esp32/blink.avm
%%
%% Flashing examples/erlang/esp32/blink.avm (size=4k)
%%
esptool.py v2.8-dev
Serial port /dev/tty.SLAB_USBtoUART
Connecting........_
Chip is ESP32D0WDQ6 (revision 1)
Features: WiFi, BT, Dual Core, Coding Scheme None
Crystal is 40MHz
MAC: 30:ae:a4:1a:37:d8
Uploading stub...
Running stub...
Stub running...
Changing baud rate to 921600
Changed.
Configuring flash size...
Auto-detected Flash size: 4MB
Wrote 16384 bytes at 0x00210000 in 0.2 seconds (611.7 kbit/s)...
Hash of data verified.
Leaving...
Hard resetting via RTS pin...

Tip Since the Erlang core libraries are flashed to the ESP32 device, it is not necessary to include core
libraries in your application AVM files. Users may be interested in using downstream development
tools, such as the Elixir ExAtomVM Mix task, or the Erlang AtomVM Rebar3 Plugin for doing
day-to-day development of applications for the AtomVM platform.

Flashing the core libraries

If you are doing development work on the core Erlang/Elixir libraries and wish to test changes that

AtomVM documentation, Release 0.6.6+git.db7fa169

90 Chapter 7. Build Instructions

https://github.com/atomvm/ExAtomVM
https://github.com/atomvm/atomvm_rebar3_plugin

do not involve the C code in the core VM you may flash esp32boot.avm (or
elixir_esp32boot.avm when using an Elixir partition table) to the boot.avm partition (offset
0x1D0000) by using the flash.sh script in the esp32 build directory as follows:

$ build/flash.sh -l ../../../build/libs/esp32boot.avm
%%
%% Flashing ../../../build/libs/esp32boot.avm (size=116k)
%%
esptool.py v4.5.1
Serial port /dev/ttyUSB0
Connecting.....
Detecting chip type... Unsupported detection protocol, switching and trying
again...
Connecting.....
Detecting chip type... ESP32
Chip is ESP32-D0WD (revision v1.0)
Features: WiFi, BT, Dual Core, 240MHz, VRef calibration in efuse, Coding Scheme
None
Crystal is 40MHz
MAC: 1a:57:c5:7f:ac:5b
Uploading stub...
Running stub...
Stub running...
Changing baud rate to 921600
Changed.
Configuring flash size...
Auto-detected Flash size: 8MB
Flash will be erased from 0x001d0000 to 0x001ecfff...
Wrote 131072 bytes at 0x001d0000 in 1.8 seconds (582.1 kbit/s)...
Hash of data verified.

Leaving...
Hard resetting via RTS pin...

7.5.8 Adding custom Nifs, Ports, and third-party components

While AtomVM is a functional implementation of the Erlang virtual machine, it is nonetheless
designed to allow developers to extend the VM to support additional integrations with peripherals
and protocols that are not otherwise supported in the core virtual machine.
AtomVM supports extensions to the VM via the implementation of custom native functions (Nifs) and
processes (AtomVM Ports), allowing users to extend the VM for additional functionality, and you can
add your own custom Nifs, ports, and additional third-party components to your ESP32 build by
adding them to the components directory, and the ESP32 build will compile them automatically.

See also

For more information about building components for the IDF SDK, consult the IDF SDK Build System
documentation.

The instructions for adding custom Nifs and ports differ in slight detail, but are otherwise quite simi-
lar. In general, they involve:

1. Adding the custom Nif or Port to the components directory of the AtomVM source tree.
2. Run idf.py reconfigure to pick up any menuconfig options, many extra drivers have

an option to disable them (they are enabled by default). Optionally use idf.py menuconfig
and confirm the driver is enabled and save when quitting.

3. Building the AtomVM binary.

Attention! The Espressif SDK and tool chains do not, unfortunately, support dynamic loading of

 AtomVM documentation, Release 0.6.6+git.db7fa169

7.5. Building for ESP32 91

https://docs.espressif.com/projects/esp-idf/en/v5.1.3/esp32/api-guides/build-system.html

shared libraries and dynamic symbol lookup. In fact, dynamic libraries are not supported at all
on the ESP32 using the IDF SDK; instead, any code that is needed at runtime must be statically
linked into the application.

Custom Nifs and Ports are available through third parties. Follow the instructions provided with
these custom components for detailed instruction for how to add the Nif or Port to your build.
More detailed instructions follow, below, for implementing your own Nif or Port.
Adding a custom AtomVM Nif

To add support for a new peripheral or protocol using custom AtomVM Nif, you need to do
the following:

• Choose a name for your nif (e.g, “my_nif”). Call this <moniker>.
• In your source code, implement the following two functions:

• void <moniker>_nif_init(GlobalContext *global);

• This function will be called once, when the application is started.

• const struct Nif *<moniker>_nif_get_nif(const char *nifname);

• This function will be called to locate the Nif during a function call. Example:

 void my_nif_init(GlobalContext *global);
 const struct Nif *my_nif_get_nif(const char *nifname);

Note Instructions for implementing Nifs is outside of the scope of this document.

• Add the REGISTER_NIF_COLLECTION using the parameters NAME, INIT_CB, DESTROY_CB,
RESOLVE_NIF_CB macro to the end of your nif code. Example:

 REGISTER_NIF_COLLECTION(my_nif, NULL, NULL, my_nif_get_nif);

Adding a custom AtomVM Port

To add support for a new peripheral or protocol using an AtomVM port, you need to do the follow-
ing:

• Choose a name for your port (e.g, “my_port”). Call this <moniker>.
• In your source code, implement the following two functions:

• void <moniker>_init(GlobalContext *global);

• This function will be called once, when the application is started.

• Context *<moniker>_create_port(GlobalContext *global, term opts);

• This function will be called to locate the Nif during a function call. Example:

 void my_port_init(GlobalContext *global);
 Context *my_port_create_port(GlobalContext *global, term opts);

Note Instructions for implementing Ports is outside of the scope of this document.

• Add the REGISTER_PORT_COLLECTION using the parameters NAME, INIT_CB, DESTROY_CB,
RESOLVE_NIF_CB macro to the end of your nif code. Example:

 REGISTER_PORT_COLLECTION(my_port, my_port_init, NULL,

AtomVM documentation, Release 0.6.6+git.db7fa169

92 Chapter 7. Build Instructions

 my_port_create_port);

7.6 Building for STM32

7.6.1 STM32 Prerequisites

The following software is required to build AtomVM for the STM32 platform:
• 11.3 ARM toolchain (or compatible with your system)
• libopencm3 version 0.8.0
• cmake

• make

• git

• python

• Erlang/OTP escript

Note AtomVM tests this build on the latest Ubuntu github runner.

7.6.2 Setup libopencm3

Before building for the first time you need to have a compiled clone of the libopencm3 libraries, from
inside the AtomVM/src/platforms/stm32 directory:

$ git clone -b v0.8.0 https://github.com/libopencm3/libopencm3.git
$ cd libopencm3 && make -j4 && cd ..

Tip You can put libopencm3 wherever you want on your PC as long as you update
LIBOPENCM3_DIR to point to it. This example assumes it has been cloned into /opt/libopencm3 and
built. From inside the AtomVM/src/platforms/stm32 directory:

$ cmake -DCMAKE_TOOLCHAIN_FILE=../cmake/arm-toolchain.cmake \
-DLIBOPENCM3_DIR=/opt/libopencm3 ..

7.6.3 Build AtomVM with cmake toolchain file

$ mkdir build
$ cd build
$ cmake -DCMAKE_TOOLCHAIN_FILE=../cmake/arm-toolchain.cmake ..
$ make

7.6.4 Changing the target device

The default build is based on the STM32F4Discovery board chip (stm32f407vgt6). If you want to
target a different chip, pass the -DDEVICE flag when invoking cmake. For example, to use the Black-
Pill V2.0, pass -DDEVICE=stm32f411ceu6. At this time any STM32F4 or STM32F7 device with
512KB or more of on package flash should work with AtomVM. If an unsupported device is passed
with the DEVICE parameter the configuration will fail. For devices with either 512KB or 768KB of
flash the available application flash space will be limited to 128KB. Devices with only 512KB of flash
may also suffer from slightly reduced performance because the compiler must optimize for size rather
than performance.

 AtomVM documentation, Release 0.6.6+git.db7fa169

7.6. Building for STM32 93

https://developer.arm.com/-/media/Files/downloads/gnu/11.3.rel1/binrel/arm-gnu-toolchain-11.3.rel1-x86_64-arm-none-eabi.tar.xz
https://github.com/libopencm3/libopencm3.git

Attention! For devices with only 512KB of flash the application address is different and must be
adjusted when flashing your application with st-flash, or using the recommended
atomvm_rebar3_plugin. The application address for these devices is 0x8060000.

7.6.5 Configuring the Console

The default build for any DEVICE will use USART2 and output will be on PA2. This default will work
well for most Discovery and generic boards that do not have an on-board TTL to USB-COM support
(including the stm32f411ceu6 A.K.A. BlackPill V2.0). For Nucleo boards that do have on
board UART to USB-COM support you may pass the cmake parameter -DBOARD=nucleo to have
the correct USART and TX pins configured automatically. The Nucleo-144 series use USART3 and
PD8, while the supported Nucleo-64 boards use USART2, but passing the BOARD parameter along
with DEVICE will configure the correct USART for your model. If any other boards are discovered to
have on board USB UART support pull requests, or opening issues with the details, are more than
welcome.
Example to configure a NUCLEO-F429ZI:

$ cmake -DCMAKE_TOOLCHAIN_FILE=../cmake/arm-toolchain.cmake -DDEVICE=stm32f429zit6
 \
-DBOARD=nucleo

The AtomVM system console USART may also be configured to a specific uart peripheral. Pass one of
the parameters from the chart below with the cmake option -DAVM_CFG_CONSOLE=CONSOLE_#,
using the desired console parameter in place of CONSOLE_#. Not all UARTs are available on every
supported board, but most will have several options that are not already used by other on board
peripherals. Consult your data sheets for your device to select an appropriate console.

Parameter USART TX Pin AtomVM Default Nucleo-144 Nucleo-64
CONSOLE_1 USART1 PA9
CONSOLE_2 USART2 PA2 ? ?
CONSOLE_3 USART3 PD8 ?
CONSOLE_4 UART4 PC10
CONSOLE_5 UART5 PC12
CONSOLE_6 USART6 PC6
CONSOLE_7 UART7 PF7
CONSOLE_8 UART8 PJ8

7.6.6 Configure STM32 logging with cmake

The default maximum log level is LOG_INFO. To change the maximum level displayed pass
-DAVM_LOG_LEVEL_MAX="{level}" to cmake, with one of LOG_ERROR, LOG_WARN, LOG_INFO, or
LOG_DEBUG (listed from least to most verbose). Log messages can be completely disabled by using
-DAVM_LOG_DISABLE=on.
For log entries colorized by log level pass -DAVM_ENABLE_LOG_COLOR=on to cmake. With color
enable there is a very small performance penalty (~1ms per message printed), the log entries are
colored as follows:

Message Level Color
ERROR Red
WARN Orange
INFO Green
DEBUG Blue

By default only ERROR messages contain file and line number information. This can be included with

AtomVM documentation, Release 0.6.6+git.db7fa169

94 Chapter 7. Build Instructions

all log entries by passing -DAVM_ENABLE_LOG_LINES=on to cmake, but it does incur a significant
performance penalty and is only suggested for debugging during development.

7.6.7 Console Printing on STM32

AtomVM is built with standard newlib to support long long integers (signed and unsigned). If
you are building for a device with extremely limited flash space the nano version of newlib can be
used instead. This may be done by passing -DAVM_NEWLIB_NANO=on. If the nano newlib is used
logs will be automatically disabled, this is because many of the VM low level log messages will
include %ull formatting and will cause buffer overflows and crash the VM if logging is not disabled
for nano newlib builds. The total flash savings of using nano newlib and disabling logs is just
under 40kB.
By default, stdout and stderr are printed on USART2. On the STM32F4Discovery board, you can see
them using a TTL-USB with the TX pin connected to board’s pin PA2 (USART2 RX). Baudrate is
115200 and serial transmission is 8N1 with no flow control.

See also

If building for a different target USART may be configure as explained above in Configuring
the Console.

7.6.8 Configuring deployment builds for STM32

After your application has been tested (and debugged) and is ready to put into active use you may want
to tune the build of AtomVM. For instance disabling logging with -DAVM_LOG_DISABLE=on as
a cmake configuration option may result in slightly better performance. This will have no affect on
the console output of your application, just disable low level log messages from the AtomVM system.
You may also want to enabling automatic reboot in the case that your application ever exits with
a return other than ok. This can be enabled with the cmake option
-DAVM_CONFIG_REBOOT_ON_NOT_OK=on.

7.7 Building for Raspberry Pi Pico

7.7.1 Pico Prerequisites

• cmake

• ninja

• Erlang/OTP

• Elixir (optional)

7.7.2 AtomVM build steps (Pico)

$ cd src/platforms/rp2040/
$ mkdir build
$ cd build
$ cmake .. -G Ninja
$ ninja

Tip You may want to build with option AVM_REBOOT_ON_NOT_OK so Pico restarts on error.

 AtomVM documentation, Release 0.6.6+git.db7fa169

7.7. Building for Raspberry Pi Pico 95

7.7.3 AtomVM build steps (Pico-W)

$ cd src/platforms/rp2040/
$ mkdir build
$ cd build
$ cmake .. -G Ninja -DPICO_BOARD=pico_w
$ ninja

Tip You may want to build with option AVM_REBOOT_ON_NOT_OK so Pico restarts on error.

The default build configuration allows the device to be re-flashed with the atomvm_rebar3_plugin
atomvm pico_flash task or restarting the application after exiting using picotool. This behav-
iour can be changed to hang the CPU when the application exits, so that power must be cycled to
restart, and BOOTSEL must be held when power on to flash a new application. To disable software
resets use -DAVM_WAIT_BOOTSEL_ON_EXIT=off when configuring cmake.
The 20 second default timeout for a USB serial connection can be changed using option
AVM_USB_WAIT_SECONDS. The device can also be configured to wait indefinitely for a serial connec-
tion using the option AVM_WAIT_FOR_USB_CONNECT=on.

7.7.4 libAtomVM build steps for Pico

Build of standard libraries is part of the generic unix build.
From the root of the project:

$ mkdir build
$ cd build
$ cmake .. -G Ninja
$ ninja

7.7.5 Running tests for Pico

Tests for Pico/RP2040 are run on the desktop (or CI) using rp2040js. Running tests currently require
nodejs 20.
Change directory to the src/platforms/rp2040/tests directory under the AtomVM source tree
root:

$ cd <atomvm-source-tree-root>
$ cd src/platforms/rp2040/tests
$

Install the emulator and required Javascript dependencies:

$ npm install

We are assuming tests were built as part of regular build of AtomVM. Run them with the commands:

$ npx tsx run-tests.ts ../build/tests/rp2040_tests.uf2 \
../build/tests/test_erl_sources/rp2040_test_modules.uf2

7.8 Building for emscripten

Two different builds are possible, depending on link options: for NodeJS and for the web browser.

7.8.1 WASM Prerequisites

• emscripten SDK

AtomVM documentation, Release 0.6.6+git.db7fa169

96 Chapter 7. Build Instructions

https://github.com/raspberrypi/picotool
https://github.com/wokwi/rp2040js
https://emscripten.org

• cmake

• Erlang/OTP
• Elixir (optional)

7.8.2 Building for NodeJS

This is the default. Execute the following commands:

$ cd src/platforms/emscripten/
$ mkdir build
$ cd build
$ emcmake cmake ..
$ emmake make -j

AtomVM can then be invoked as on Generic Unix with node:

$ node ./src/AtomVM.js

7.8.3 Running tests with NodeJS

NodeJS build currently does not have dedicated tests. However, you can run AtomVM library tests
that do not depend on unimplemented APIs.
Build them first by building AtomVM for Generic Unix (see above.) Then execute the tests with:

$ cd src/platforms/emscripten/build/
$ node ./src/AtomVM.js ../../../../build/tests/libs/eavmlib/test_eavmlib.avm
$ node ./src/AtomVM.js ../../../../build/tests/libs/alisp/test_alisp.avm

7.8.4 Building for the web

Execute the following commands:

$ cd src/platforms/emscripten/
$ mkdir build
$ cd build
$ emcmake cmake .. -DAVM_EMSCRIPTEN_ENV=web
$ emmake make -j

7.8.5 Running tests with Cypress

AtomVM WebAssembly port on the web uses SharedArrayBuffer feature which is restricted by
browsers. Tests require an HTTP server that returns the proper HTTP headers.
Additionally, tests require Cypress. Plus, because of a current bug in Cypress, tests only run with
Chrome-based browsers except Electron (Chromium, Chrome or Edge).
Build first AtomVM for Generic Unix (see above). This will include the web server.
Then run the web server with:

$ cd build
$./src/AtomVM examples/emscripten/wasm_webserver.avm

In another terminal, compile specific test modules that are not part of examples.

$ cd src/platforms/emscripten/build/
$ make emscripten_erlang_test_modules

Then run tests with Cypress with:

$ cd src/platforms/emscripten/tests/

 AtomVM documentation, Release 0.6.6+git.db7fa169

7.8. Building for emscripten 97

https://www.cypress.io
https://github.com/cypress-io/cypress/issues/19912

$ npm install cypress
$ npx cypress run --browser chrome

You can alternatively specify: chromium or edge depending on what is installed.
Alternatively, on Linux, you can run tests with docker:

$ cd src/platforms/emscripten/tests/
$ docker run --network host -v $PWD:/mnt -w /mnt cypress/included:12.17.1 \
--browser chrome

Or you can open Cypress to interactively run selected test suites.

$ cd src/platforms/emscripten/tests/
$ npm install cypress
$ npx cypress open

AtomVM documentation, Release 0.6.6+git.db7fa169

98 Chapter 7. Build Instructions

Chapter 8

AtomVM Internals

8.1 What is an Abstract Machine?

AtomVM is an “abstract” or “virtual” machine, in the sense that it simulates, in software, what
a physical machine would do when executing machine instructions. In a normal computing machine
(e.g., a desktop computer), machine code instructions are generated by a tool called a compiler,
allowing an application developer to write software in a high-level language (such as C). (In rare
cases, application developers will write instructions in assembly code, which is closer to the actual
machine instructions, but which still requires a translation step, called “assembly”, to translate
the assembly code into actual machine code.) Machine code instructions are executed in hardware
using the machine’s Central Processing Unit (CPU), which is specifically designed to efficiently
execute machine instructions targeted for the specific machine architecture (e.g., Intel x86, ARM,
Apple M-series, etc.) As a result, machine code instructions are typically tightly packed, encoded
instructions that require minimum effort (on the part of the machine) to unpack an interpret. These
a low level instructions unsuited for human interpretation, or at least for most humans.
AtomVM and virtual machines generally (including, for example, the Java Virtual Machine) perform
a similar task, except that i) the instructions are not machine code instructions, but rather what are
typically called “bytecode” or sometimes “opcode” instructions; and ii) the generated instructions are
themselves executed by a runtime execution engine written in software, a so-called “virtual” or some-
times “abstract” machine. These bytecode instructions are generated by a compiler tailored specifi-
cally for the virtual machine. For example, the javac compiler is used to translate Java source code
into Java VM bytecode, and the erlc compiler is used to translate Erlang source code into BEAM
opcodes.
AtomVM is an abstract machine designed to implement the BEAM instruction set, the 170+ (and
growing) set of virtual machine instructions implemented in the Erlang/OTP BEAM.

Note There is no abstract specification of the BEAM abstract machine and instruction set. Instead,
the BEAM implementation by the Erlang/OTP team is the definitive specification of its behavior.

At a high level, the AtomVM abstract machine is responsible for:
• Loading and execution of the BEAM opcodes encoded in one or more BEAM files;
• Managing calls to internal and external functions, handling return values, exceptions, and

crashes;
• Creation and destruction of Erlang “processes” within the AtomVM memory space, and

communication between processes via message passing;
• Memory management (allocation and reclamation) of memory associated with Erlang “pro-

cesses”
• Pre-emptive scheduling and interruption of Erlang “processes”

 99

• Execution of user-defined native code (Nifs and Ports)
• Interfacing with the host operating system (or facsimile)

This document provides a description of the AtomVM abstract machine, including its architecture and
the major components and data structures that form the system. It is intended for developers who
want to get involved in bug fixing or implementing features for the VM, as well as for anyone inter-
ested in virtual machine internals targeted for BEAM-based languages, such as Erlang or Elixir.

8.2 AtomVM Data Structures

This section describes AtomVM internal data structures that are used to manage the load and runtime
state of the virtual machine. Since AtomVM is written in C, this discussion will largely be in
the context of native C data structures (i.e., structs). The descriptions will start at a fairly high level
but drill down to some detail about the data structures, themselves. This narrative is important,
because memory is limited on the target architectures for AtomVM (i.e., micro-controllers), and it is
important to always be aware of how memory is organized and used in a way that is as space-efficient
as possible.

8.2.1 The GlobalContext

We start with the top level data structure, the GlobalContext struct. This object is a singleton object
(currently, and for the foreseeable future), and represents the root of all data structures in the virtual
machine. It is in essence in 1..1 correspondence with instances of the virtual machine.

Note Given the design of the system, it is theoretically possible to run multiple instances of
the AtomVM in one process space. However, no current deployments make use of this capability.

In order to simplify the exposition of this structure, we break the fields of the structure into manage-
able subsets:

• Process management – fields associated with the management of Erlang (lightweight) “pro-
cesses”

• Atoms management – fields associated with the storage of atoms
• Module Management – fields associated with the loading of BEAM modules
• Reference Counted Binaries – fields associated with the storage of binary data shared between

processes
• Other data structures

These subsets are described in more detail below.

Warning Not all fields of the GlobalContext structure are described in this document.

Process Management

As a BEAM implementation, AtomVM must be capable of spawning and managing the lifecycle of
Erlang lightweight processes. Each of these processes is encapsulated in the Context structure,
described in more detail in subsequent sections.
The GlobalContext structure maintains a list of running processes and contains the following fields
for managing the running Erlang processes in the VM:

• processes_table the list of all processes running in the system
• waiting_processes the subset of processes that are waiting to run (e.g., waiting for

a message or timeout condition).
• running_processes the subset of processes that are currently running.

AtomVM documentation, Release 0.6.6+git.db7fa169

100 Chapter 8. AtomVM Internals

• ready_processes the subset of processes that are ready to run.

Processes are in either waiting_processes, running_processes or ready_processes.
A running process can technically be moved to the ready list while running to signify that if it yields,
it will be eligible for being run again, typically if it receives a message. Also, native handlers (ports)
are never moved to the running_processes list but are in the waiting_processes list when
they run (and can be moved to ready_processes list if they are made ready while running).
Each of these fields are doubly-linked list (ring) structures, i.e, structs containing a prev and next
pointer field. The Context data structure begins with two such structures, the first of which links
the Context struct in the processes_table field, and the second of which is used for either
the waiting_processes, the ready_processes or the running_processes field.

Tip The C programming language treats structures in memory as contiguous sequences of fields of
given types. Structures have no hidden preamble data, such as you might find in C++ or who knows
what in even higher level languages. The size of a struct, therefore, is determined simply by the size
of the component fields.

The relationship between the GlobalContext fields that manage BEAM processes and the Context
data structures that represent the processes, themselves, is illustrated in the following diagram:

GlobalContext Processes

See also

The Context data structure is described in more detail below.

8.2.2 Contexts

8.3 The Scheduler

In SMP builds, AtomVM runs one scheduler thread per core. Scheduler threads are actually started
on demand. The number of scheduler threads can be queried with erlang:system_info/1 and be
modified with erlang:system_flag/2. All scheduler threads are considered equal and there is no
notion of main thread except when shutting down (main thread is shut down last).
Each scheduler thread picks a ready process and execute it until it yields. Erlang processes yield
when they are waiting (for a message) and after a number of reductions elapsed. Native processes
yield when they are done consuming messages (when the handler returns).
Once a scheduler thread is done executing a process, if no other thread is waiting into
sys_poll_events, it calls sys_poll_events with a timeout that correspond to the time to wait
for next execution. If there are ready processes, the timeout is 0. If there is no ready process, this
scheduler thread will wait into sys_poll_event and depending on the platform implementation,
the CPU usage can drop.
If there already is one thread in sys_poll_events, other scheduler threads pick the next ready
process and if there is none, wait. Other scheduler threads can also interrupt the wait in
sys_poll_events if a process is made ready to run. They do so using platform function
sys_signal.

8.4 Tasks and synchronization mechanisms

AtomVM SMP builds run on operating or runtime systems implementing tasks (FreeRTOS SMP on
ESP32, Unix and WebAssembly) as well as on systems with no task implementation (Raspberry Pi

 AtomVM documentation, Release 0.6.6+git.db7fa169

8.3. The Scheduler 101

Pico).
On runtime systems with tasks, each scheduler thread is implemented as a task. On Pico, a scheduler
thread runs on Core 0 and another one runs on Core 1, and they are effectively pinned to each core.
For synchronization purposes, AtomVM uses mutexes, condition variables, RW locks, spinlocks and
Atomics.
Availability of RW Locks and atomics are verified at compile time using detection of symbols for RW
Locks and ATOMIC_*_LOCK_FREE C11 macros for atomics.
Mutexes and condition variables are provided by the SDK or the runtime system. If RW Locks are not
available, AtomVM uses mutexes. Atomics are not available on Pico and are replaced by critical
sections. Spinlocks are implemented by AtomVM on top of Atomics, or using mutexes on Pico.
Importantly, locking synchronization mechanisms (mutexes, RW locks, spinlocks) are not inter-
rupt-safe. Interrupt service routines must not try to lock as they could fail forever if interrupted code
owns the lock. Atomics, including emulation on Pico, are interrupt-safe.
Drivers can send messages from event callbacks typically called from FreeRTOS tasks using
globalcontext_send_message_from_task or port_send_message_from_task functions
instead of globalcontext_send_message or port_send_message. These functions try to
acquire required locks and if they fail, enqueue sent message in a queue, so it is later processed when
the scheduler performs context switching. The functions are undefined if option
AVM_DISABLE_TASK_DRIVER is passed. Some platforms do not include support for task drivers.
Define AVM_TASK_DRIVER_ENABLED can be checked to determine if these functions are available.

8.5 Mailboxes and signals

Erlang processes receive messages in a mailbox. The mailbox is the interface with other processes.
When a sender process sends a message to a recipient process, the message is first enqueued into
an outer mailbox. The recipient process eventually moves all messages from the outer mailbox to
the inner mailbox. The reason for the inner and outer mailbox is to use lock-free data structures using
atomic CAS operations.
Sometimes, Erlang processes need to query information from other processes but without sending
a regular message, for example when using process_info/1,2 nif. This is handled by signals.
Signals are special messages that are enqueued in the outer mailbox of a process. Signals are
processed by the recipient process when regular messages from the outer mailbox are moved to
the inner mailbox. Signal processing code is part of the main loop and transparent to recipient
processes. Both native handlers and erlang processes can receive signals. Signals are also used to run
specific operation on other processes that cannot be done from another thread. For example, signals
are used to perform garbage collection on another process.
When an Erlang process calls a nif that requires such an information from another process such as
process_info/1,2, the nif returns a special value and set the Trap flag on the calling process.
The calling process is effectively blocked until the other process is scheduled and the information is
sent back using another signal message. This mechanism can also be used by nifs that want to block
until a condition is true.

8.6 Stacktraces

Stacktraces are computed from information gathered at load time from BEAM modules loaded into
the application, together with information in the runtime stack that is maintained during the execu-
tion of a program. In addition, if a BEAM file contains a Line chunk, additional information is added
to stack traces, including the file name (as defined at compile time), as well as the line number of
a function call.

Tip Adding line information to a BEAM file adds non-trivial memory overhead to applications and

AtomVM documentation, Release 0.6.6+git.db7fa169

102 Chapter 8. AtomVM Internals

should only be used when necessary (e.g., during the development process). For applications to make
the best use of memory in tightly constrained environments, packagers should consider removing line
information all together from BEAM files and rely instead on logging or other mechanisms for diag-
nosing problems in the field.

Newcomers to Erlang may find stacktraces slightly confusing, because some optimizations taken by
the Erlang compiler and runtime can result in stack frames “missing” from stack traces. For example,
tail-recursive function calls, as well as function calls that occur as the last expression in a function
clause, don’t involve the creation of frames in the runtime stack, and consequently will not appear in
a stacktrace.

8.6.1 Line Numbers

Including file and line number information in stacktraces adds considerable overhead to both
the BEAM file data, as well as the memory consumed at module load time. The data structures used
to track line numbers and file names are described below and are only created if the associated BEAM
file contains a Line chunk.
The line-refs table

The line-refs table is an array of 16-bit integers, mapping line references (as they occur in BEAM
instructions) to the actual line numbers in a file. (Internally, BEAM instructions do not reference line
numbers directly, but instead are indirected through a line index). This table is stored on the Module
structure.
This table is populated when the BEAM file is loaded. The table is created from information in
the Line chunk in the BEAM file, if it exists. Note that if there is no Line chunk in a BEAM file, this
table is not created.
The memory cost of this table is num_line_refs * 2 bytes, for each loaded module, or 0, if there is
no Line chunk in the associated BEAM file.
The filenames table

The filenames table is a table of (usually only 1?) file name. This table maps filename indices to
ModuleFilename structures, which is essentially a pointer and a length (of type size_t). This table
generally only contains 1 entry, the file name of the Erlang source code module from which the BEAM
file was generated. This table is stored on the Module structure.
Note that a ModuleFilename structure points to data directly in the Line chunk of the BEAM file.
Therefore, for ports of AtomVM that memory-map BEAM file data (e.g., ESP32), the actual file name
data does not consume any memory.
The memory cost of this table is num_filenames * sizeof(struct ModuleFilename), where
struct ModuleFilename is a pointer and length, for each loaded module, or 0, if there is no Line
chunk in the associated BEAM file.
The line-ref-offsets list

The line-ref-offsets list is a sequence of LineRefOffset structures, where each structure contains
a ListHead (for list book-keeping), a 16-bit line-ref, and an unsigned integer value designating
the code offset at which the line reference occurs in the code chunk of the BEAM file. This list is
stored on the Module structure.
This list is populated at code load time. When a line reference is encountered during code loading,
a LineRefOffset structure is allocated and added to the line-ref-offsets list. This list is used at
a later time to find the line number at which a stack frame is called, in a manner described below.
The memory cost of this list is num_line_refs * sizeof(struct LineRefOffset), for each
loaded module, or 0, if there is no Line chunk in the associated BEAM file.

 AtomVM documentation, Release 0.6.6+git.db7fa169

8.7. AtomVM WebAssembly port 103

8.7 AtomVM WebAssembly port

WebAssembly or Wasm port of AtomVM relies on Emscripten SDK and library. Even when SMP is
disabled (with -DAVM_DISABLE_SMP=On), it uses pthread library to sleep when Erlang processes are
not running (to not waste CPU cycles).

8.7.1 NodeJS environment build

The NodeJS environment build of this port is relatively straightforward, featuring NODERAWFS
which means it can access files directly like node does.

8.7.2 Web environment build

The Web environment build of this port is slightly more complex.
Regarding files, main function can load modules (beam or AVM packages) using FetchAPI, which
means they can be served by the same HTTP server. This is a fallback and users can preload files
using Emscripten file_packager tool.
The port also uses Emscripten’s proxy-to-pthread feature which means AtomVM’s main function is
run in a web worker. The rationale is the browser thread (or main thread) with WebAssembly cannot
run a loop such as AtomVM’s schedulers. Web workers typically cannot manipulate the DOM and do
other things that only the browser’s main thread can do. For this purpose, Erlang processes can call
emscripten:run_script/2 function which dispatches the Javascript to execute to the main
thread, waiting for completion (with [main_thread]) or not waiting for completion (with
[main_thread, async]). Waiting for completion of a script on the main thread does not block
the Erlang scheduler, other Erlang processes can be scheduled. Execution of Javascript on the worker
thread, however, does block the scheduler.
Javascript code can also send messages to Erlang processes using call and cast functions from
main.c. These functions are actually wrapped in atomvm.pre.js. Usage is demonstrated by
call_cast.html example.
Cast is straightforward: the message is enqueued and picked up by the scheduler. It is freed when it is
processed.
Call allows Javascript code to wait for the result and is based on Javascript promises (related to async
/await syntax).

1. A promise is created (in the browser’s main thread) in a map to prevent Javascript garbage
collection (this is done by Emscripten’s promise glue code).

2. An Erlang resource is created to encapsulate the promise so it is properly destroyed when
garbage collected

3. A message is enqueued with the resource as well as the registered name of the target process
and the content of the message

4. C code returns the handle of the promise (actually the index in the map) to Javascript Module.-
call wrapper.

5. The Module.call wrapper converts the handle into a Promise object and returns it, so
Javascript code can await on the promise.

6. A scheduler dequeues the message with the resource, looks up the target process and sends it
the resource as a term

7. The target process eventually calls emscripten:promise_resolve/1,2 or
emscripten:promise_reject/1,2 to resolve or reject the promise.

8. The emscripten:promise_resolve/1,2 and emscripten:promise_reject/1,2 nifs
dispatch a message in the browser’s main thread.

AtomVM documentation, Release 0.6.6+git.db7fa169

104 Chapter 8. AtomVM Internals

9. The dispatched function retrieves the promise from its index, resolves or rejects it, with the value
passed to emscripten:promise_resolve/2 or emscripten:promise_reject/2 and
destroys it.

Values currently can only be integers or strings.
If the scheduler cannot find the target process, the promise is rejected with “noproc” as a value. As
the promise is encapsulated into an Erlang resource, if the resource object’s reference count reaches 0,
the promise is rejected with “noproc” as the value.

 AtomVM documentation, Release 0.6.6+git.db7fa169

8.7. AtomVM WebAssembly port 105

9 Memory Management

Like most managed execution environments, AtomVM provides automated memory management for
compiled Erlang/Elixir applications that run on the platform, allowing developers to focus on
the logic of application programs, instead of the minutiae of managing the allocation and disposal of
memory in the process heap of the program.
Because Erlang/Elixir, and the BEAM, specifically, is a shared-nothing, concurrency-based language,
AtomVM can manage memory independently, for each unit of concurrency, viz., the Erlang process.
While there is some global state, internally, that AtomVM manages (e.g., to manage all running
processes in the system), memory management for each individual process can be performed inde-
pendently of any other process.
AtomVM internally uses a “Context” structure, to manage aspects of a process (including memory
management), and we use “execution context” and “Erlang process” interchangeably in this docu-
ment. As usual, an Erlang process should be distinguished from the Operating System (OS) process
in which Erlang processes run.
For any given execution context, there are three regions of memory that are relevant: i) the stack, ii)
the heap, and iii) registers. The stack and heap actually occupy one region of memory allocated in
the OS process heap (via malloc or equiv), and grow in opposite directions towards each other. Regis-
ters in AtomVM are a fixed size array of 16 elements.
The fundamental unit of memory that occupies space in the stack, heap, and registers is the term,
which is typedef’d internally to be an integral type that fits in a single word of machine memory (i.e.,
a C int). Various tricks are used, described below, to manage and reference multi-word terms, but in
general, a term (or in some cases, a term pointer) is intended to fit into a single word or memory.
This document describes the memory layout for each execution context (i.e., Erlang/Elixir process),
how memory is allocated and used, how terms are represented internally, and how AtomVM makes
room for more terms, as memory usage increases and as terms go out of scope and are no longer used
by the application, and can hence be garbage collected.

9.1 The Context structure

9.1.1 The Heap and Stack

The heap and stack for each AtomVM process are stored in a single allocated block of memory (e.g.,
via the malloc C function) in the heap space of the AtomVM program, and the AtomVM runtime
manages the allocation of portions of this memory during the execution of a program. The heap
starts at the bottom of the block of memory, and grows incrementally towards the top of the allocated
block, as memory is allocated in the program. Each word in the heap and stack (or in some cases,
a sequence of words) represent a term that has been allocated.
The heap contains all of the allocated terms in an execution context. In some cases, the terms occupy
more than one word of memory (e.g., a tuple), but in general, the heap contains a record of memory in
use by the program.
The heap grows incrementally, as memory is allocated, and terms are allocated sequentially, in
increasing memory addresses. There is, therefore, no memory fragmentation, properly speaking, at
least insofar as a portion of memory might be in use and then freed. However, it is possible that
previously allocated blocks of memory in the context heap are no longer referenced by the program.
In this case, the allocated blocks are “garbage”, and are reclaimed at the next garbage collection.
The actual growth of the heap is controlled by a heap growth strategy (atomvm_heap_growth
spawn option) as described below.

It is possible for the AtomVM heap, as provided by the underlying operating system, to become
fragmented, as the execution context stack and heap are allocated via malloc or equiv. But

AtomVM documentation, Release 0.6.6+git.db7fa169

106 Chapter 9. Memory Management

that is a different kind of fragmentation that does not refer to the allocated block used by
an individual AtomVM process.

The stack grows from the top of the allocated block toward the heap in decreasing addresses. Terms
in the stack, as opposed to the heap, are either single-word terms, i.e., simple terms like small inte-
gers, process ids, etc, or pointers to terms in the heap. In either case, they only occupy one word of
memory.
The region between the stack and heap is the free space available to the Erlang/Elixir process.
The following diagram illustrates an allocated block of memory that stores terms (or term pointers) in
the heap and stack:

+================================+ <- heap_start --
| word[0] | ^ ^
+--------------------------------+ | |
| word[1] | | |
+--------------------------------+ | |
| word[2] | | heap |
+--------------------------------+ | |
| ... | | |
+--------------------------------+ | |
| | v |
+--------------------------------+ <- heap_ptr |
	^	
		free
	v	
+--------------------------------+ <- e ----		
	^	
+--------------------------------+		
+--------------------------------+	stack	
+--------------------------------+		
word[n-1]	v v	
+================================+ <- stack_base --

The initial size of the allocated block for the stack and heap in AtomVM is 8 words. As heap and
stack allocations grow, eventually, the amount of free space will decrease to the point where a garbage
collection is required. In this case, a new but larger block of memory is allocated by the AtomVM OS
process, and terms are copied from the old stack and heap to the new stack and heap. Garbage collec-
tion is described in more detail below.

9.1.2 Heap growth strategies

AtomVM aims at minimizing memory footprint and several heap growth strategies are available.
The heap is grown or shrunk when an allocation is required and the current execution context allows
for a garbage collection (that will move data structures), allows for shrinking or forces shrinking (typi-
cally in the case of a call to erlang:garbage_collect/0,1).
Each strategy is set at the process level.
Default strategy is bounded free ({atomvm_heap_growth, bounded_free}). In this strategy,
when more memory is required, the allocator keeps the free amount between fixed boundaries (cur-
rently 16 and 32 terms). If no allocation is required but free space is larger than boundary, a garbage
collection is triggered. After copying data to a new heap, if the free space is larger than the maximum,
the heap is shrunk within the boundaries.
With minimum strategy ({atomvm_heap_growth, minimum}), when an allocation can happen, it
is always adjusted to have the free space at 0.

 AtomVM documentation, Release 0.6.6+git.db7fa169

9.1. The Context structure 107

With fibonacci strategy ({atomvm_heap_growth, fibonacci}), heap size grows following a vari-
ation of fibonacci until a large value and then grows by 20%. If free space is larger than 75% of heap
size, the heap is shrunk. This strategy is inspired from Erlang/OTP’s implementation.

9.1.3 Registers

Registered are allocated in an array of 16 terms (words) and are referenced by the x field in
the Context data structure:

+---------+---------+---------+--------+
| x[0] | x[1] | ... | x[15] |
+---------+---------+---------+--------+

Like terms in the stack, terms in registers are either single-word terms, i.e., simple terms like small
integers, process ids, etc, or pointers to terms in the heap, in a manner described in more detail below.
In either case, they only occupy one word of memory.
Registers are used as part of the BEAM instruction set to store and retrieve values that are passed
between BEAM instruction opcodes.

9.1.4 Process Dictionary

AtomVM processes support a process dictionary, or map of process-specific data, as supported via
the erlang:put/2 and erlang:get/1 functions.
The Process Dictionary contains a list of key-value pairs, where each key and value is a single-word
term, either a simple term like an atom or pid, or a reference to an allocated object in the process heap.
(see below)

9.1.5 Heap Fragments

AtomVM makes use of heap fragments in some edge cases, such as loading external terms from
the literals table in a BEAM file. Heap fragments are individually allocated blocks of memory that
contain may contain multi-word term structures. The data in heap fragments are copied into the heap
during a garbage collection event, and then deleted, so heap fragments are generally short lived.
However, during execution of a program, there may be references to term structures in such frag-
ments from the stack, registers, the process dictionary, or from nested terms in the process heap.

9.1.6 Mailbox

Each Erlang process contains a process mailbox, which is a linked-list structure of messages. Each
message in this list contains a term structure, which is a copy of a term sent to it, e.g., via
the erlang:send/2 operation, or ! operator.
The representation of terms in a message is identical to that in the heap and heap fragments.
Messages are allocated like fragments and they actually become heap fragments of the receiving
process when the message is read off the mailbox (e.g., via receive ... end). Messages (and their
term contents) are moved to the main heap as part of regular garbage collection of the process, and
the fragment is freed.

9.1.7 Memory Graph

Memory is allocated in the execution context heap, and structured types, such as tuples and lists,
generally include references to the blocks of memory that have been previously allocated.
For example, if we look at the memory allocated for the term

{foo, [{bar, self()}]}

we would generally see something like the following in the execution context heap:

| ... |

AtomVM documentation, Release 0.6.6+git.db7fa169

108 Chapter 9. Memory Management

| |
+---------------------------+
| tuple |<--+
+---------------------------+ |
| bar | |
+---------------------------+ |
| <0.1.0> | |
+---------------------------+ |
| [] |<- | --+
+---------------------------+ | |
| tuple ptr |---+ |
+---------------------------+ |
| tuple | |
+---------------------------+ |
| foo | |
+---------------------------+ |
| list ptr |-------+
+---------------------------+
| |
| ... |
01234567890123456789012345678901234567890123456789

The tuple {bar, self()} is allocated in a block, and the list [{bar, self()}] (or, technically,
[{bar, self()} | []]) contains elements that point to it elements (in this case, [] and {bar,
self()} – note that in general, in AtomVM, the address of the tail of a list occupies the first byte in
the list – more details on that below). Finally, the tuple {foo, [{bar, self()}]} contains
the atom foo and a pointer to the list it contains.
In this way, the set of allocated blocks in the execution context heap forms a directed graph of objects,
whose nodes are structured terms (lists, tuples, etc) and whose leaves are simple terms, like atoms,
pids, and so forth. Note that because BEAM-based languages such as Erlang and Elixir are true func-
tional programming languages, these directed graphs have no cycles.
The stack, registers, and process dictionary contain pointers to terms in the heap. We call these terms
“root” nodes, and any term in the heap that is referenced by a root node, or any term that is so refer-
enced by such a term, is in the path of a root node. Some terms in the heap are not in the path of
a root node. We call these terms “garbage”.
Note that the values in the stack and register root nodes change over time as the result of the execu-
tion of Erlang opcodes, and are dependent on the BEAM output of the Erlang compiler, along with
inputs to the program being executed. Thus, a term in the process heap may become garbage, once it
is no longer reachable from the root set. But once garbage, the term will always remain garbage, at
least until it is reclaimed during a garbage collection event. For more information about how
the garbage collector works, see the Garbage Collection section, below.

9.2 Simple Terms

The fundamental unit of memory in AtomVM is the term object, which is designed to fit either into
a single machine work (single-word terms), or into multiple words (so called “boxed terms” and lists).
This section enumerates the AtomVM term types, and how they are represented in memory.

Note The term type is overloaded in some cases to store raw pointers to memory addresses, but this is
rare and well controlled.

The following term types take up a single word, referred to as “immediates” in the BEAM documen-
tation[1]. The low-order bits of the word are used to represent the type of the term, and the high
order bits represent the term contents, in a manner described in the following sections.

 AtomVM documentation, Release 0.6.6+git.db7fa169

9.2. Simple Terms 109

9.2.1 Atoms

An atom is represented as a single word, with the low-order 6 bits having the value 0xB (001011b).
The high order word-size-6 bits are used to represent the index of the atom in the global atom table:

 |< 6 >|
+=========================+======+
| atom index |001011| <- 0xB
+=========================+======+
| |
|<---------- word-size --------->|

There may therefore only be 2^{word-size-6} atoms in an AtomVM program (e.g., on a 32-bit
platform, 67,108,864). Plenty to work with!

Note The global atom table is a table of all allocated atoms, and is generally (at least in the limit, as
modules are loaded) a fixed size table. Management of the global atom table is outside of the scope of
this document.

9.2.2 Integers

An integer is represented as a single word, with the low-order 4 bits having the value 0xF (1111b).
The high order word-size-6 bits are used to represent the integer value:

 |< 4>|
+===========================+====+
| integer value |1111| <- 0xF
+===========================+====+
| |
|<---------- word-size --------->|

The magnitude of an integer is therefore limited to 2^{word-size - 4} in an AtomVM program
(e.g., on a 32-bit platform, +- 134,217,728).

Attention! Arbitrarily large integers (bignums) are not currently supported in AtomVM.

9.2.3 nil

The special value nil (typically the tail of the tail … of the tail of a list, or []) is the special value
0x3B:

+================================+
|000 ... 0000111011| <- 0x3B
+================================+
| |
|<---------- word-size --------->|

9.2.4 Pids

A Pid is represented as a single word, with the low order 4 bits indicating the Pid term type (0x03),
and (for now), the high order word-size - 4 bits store the local process id:

 |< 4>|
+===========================+====+
| local process id |0011| <- 0x3
+===========================+====+
| |
|<---------- word-size --------->|

AtomVM documentation, Release 0.6.6+git.db7fa169

110 Chapter 9. Memory Management

There may therefore only be 2^{word-size - 4} Pids in an AtomVM program (e.g., on a 32-bit
platform, 268,435,456).

Note Global process IDs are not currently supported, but they may be in the future, which may result
in segmentation of the high order word-size - 4 bits.

9.3 Boxed terms

Some term types cannot fit in a single word, and must therefore used a sequence of contiguous words
to represent the term contents. These terms are called “Boxed” terms. Boxed terms use the low-order
6 bits of the first byte (boxed[0]) to represent the term type, and the high order word-size - 6
bits to represent the remaining size (in words) of the boxed term, not including the first word.

9.3.1 Boxed term pointers

Before discussing the different types of boxed terms in detail, let us first see how boxed terms are
referenced from the stack, registers, process dictionary, and from embedded terms in the heap. We
call such references to boxed terms boxed term pointers.
A boxed term pointer is a single-word term that contains the address of the referenced term in
the high-order word-size - 2 bits, and 0x2 (10b) in the low-order 2 bits.

 |2 |
+=============================+==+
| term address |10| <- term pointer type (2 bits)
+=============================+==+
| |
|<---------- word-size --------->|

Because terms (and hence the heap) are always aligned on boundaries that are divisible by the word
size, the low-order 2 bits of a term address are always 0. Consequently, the high-order word-size - 2
(1,073,741,824, on a 32-bit platform) are sufficient to address any term address in the AtomVM
address space, for 32-bit and greater machine architectures.

9.3.2 References

A reference (e.g., created via erlang:make_ref/0) stores a 64-bit incrementing counter value (a “ref
tick”). On 64 bit machines, a Reference takes up two words – the boxed header and the 64-bit value,
which of course can fit in a single word. On 32-bit platforms, the high-order 28 bits are stored in
boxed[1], and the low-order 32 bits are stored in boxed[2]:

 |< 6 >|
+=========================+======+
| boxed-size |010000| boxed[0]
+-------------------------+------+
| high-order ref-ticks | boxed[1]
+================================+
| low-order ref-ticks | boxed[2] (32-bit only)
+= = = = = = = = = = = = = = = ==+
| |
|<---------- word-size --------->|

9.3.3 Tuples

Tuples are represented as boxed terms containing a boxed header (boxed[0]), a type tag of 0x00
(000000b), followed by a sequence of n-many words, which may either (copies of) single-word terms,
or boxed term pointers, where n is the arity of the tuple:

 AtomVM documentation, Release 0.6.6+git.db7fa169

9.3. Boxed terms 111

 |< 6 >|
+=========================+======+
| boxed-size (n) |000000| boxed[0]
+-------------------------+------+
| element-1 | boxed[1]
+--------------------------------+
| element-2 | boxed[2]
+--------------------------------+
| ... | boxed[i]
+--------------------------------+
| element-n | boxed[n]
+================================+
| |
|<---------- word-size --------->|

9.3.4 Maps

Maps are represented as boxed terms containing a boxed header (boxed[0]), a type tag of 0x3C
(111100b), followed by:

• a term pointer to a tuple of arity n containing the keys in the map;
• a sequence of n-many words, containing the values of the map corresponding (in order) to

the keys in the reference tuple.

The keys and values are single word terms, i.e., either immediates or pointers to boxed terms or lists.

 +=========================+======+
+-----> | boxed-tuple (n) |000000|
| +-------------------------+------+
| | key-1 |
| +--------------------------------+
| | key-2 |
| +--------------------------------+
| | ... |
| +--------------------------------+
| | key-n |
| +================================+
| | |
| ...
| | |< 6 >|
| +=========================+======+
| | boxed-size (n) |111100| boxed[0]
| +-------------------------+------+
+-----------------< keys | boxed[1]
 +--------------------------------+
 | value-1 | boxed[2]
 +--------------------------------+
 | ... | ...
 +--------------------------------+
 | value-n | boxed[2 + n]
 +================================+
 | |
 |<---------- word-size --------->|

The tuple of keys may or may not be contiguous with the boxed term holding the map itself (and in
general will not be, after garbage collection). In addition, maps that are modified [sic] via the :=
operator (or via =>, when the key already exists in the source map) share the keys tuple, for space effi-
ciency.

AtomVM documentation, Release 0.6.6+git.db7fa169

112 Chapter 9. Memory Management

9.3.5 Binaries

Binaries are stored in several different ways, depending on their size and the kinds of data to which
they refer.
Binary data less than 64 bytes in length are stored in the process heap, as so-called Heap Binaries.
Binary data greater or equal to 64 bytes is stored in two manners, depending on whether the data
stored is constant data (e.g., literal binary data compiled directly into a BEAM file), or dynamically
allocated data, e.g., as the result of a call to the erlang:list_to_binary/1 Nif.
Non-const binaries are stored outside of the heap in dynamically allocated memory and are refer-
ence-counted, whereby references to dynamically allocated blocks are tracked from pointers in heap
storage. This way, large blocks of binary data can be efficiently shared between processes; only a rela-
tively small term that contains a reference to the dynamically allocated storage needs to be copied.
When the reference count of non-literal binary reaches 0, the dynamically allocated memory is free’d.
Const binaries share similar features to non-const binaries in the process heap; however, instead of
pointing to dynamically allocated memory that requires reference counting and memory manage-
ment, the boxed term in the process heap points directly to constant memory (e.g., a term literal
stored in a memory-mapped BEAM file). This is especially useful in memory constrained applica-
tions, such as the ESP32 micro-controller, where the BEAM file contents are not read into memory, but
are instead directly mapped from flash storage.
Finally, a special kind of binary is used in the heap to maintain the state of a match context, when, for
example, matching binary terms using Erlang bit syntax. Like non-const binaries, creation and
destruction of match context binaries will affect the reference count on the binaries to which they
refer.
The following sub-sections describe these storage mechanisms and memory management in more
detail.
Heap Binaries

Heap binaries are represented as boxed terms containing a boxed header (boxed[0]), a type tag of
0x024 (100100b), followed by the size in bytes of the binary, and then a sequence of n-many words,
which contains the sequence of size-many bytes (<= word-size * n):

 |< 6 >|
+=========================+======+
| boxed-size (n) |100100| boxed[0]
+-------------------------+------+
| size (in bytes) | boxed[1]
+--------------------------------+
| byte-1, byte-2, byte-3, ... | boxed[2]
+--------------------------------+
| ... | boxed[i]
+-------------------+------------+
| ..., byte-{size-1}| -unused- | boxed[n+1]
+===================+============+
| |
|<---------- word-size --------->|

Note If the number of bytes in a binary is not evenly divisible by the machine word size, then
the remaining sequence of bytes in the last word are unused.

Reference Counted Binaries

Reference counted binaries are represented as boxed terms containing a boxed header (boxed[0]),
a type tag of 0x020 (100000b), followed by the size in bytes of the binary data, a word containing
a set of flags, and then a pointer to the off-heap data.
Currently, only the low-order bit of the flags field is used. A 0 value of indicates that the referenced

 AtomVM documentation, Release 0.6.6+git.db7fa169

9.3. Boxed terms 113

binary is non-literal.
The off-heap data is a block of allocated data, containing:

• a ListHead structure, used to maintain a list of dynamically allocated data (mostly for book-
keeping purposes);

• a reference count (unsigned integer);
• the size of the stored data;
• the stored data, itself.

All of the above data is allocated in a single block, so that it can be easily free’d when no longer
referenced.
The reference count is initialized to 1, under the principle that that reference count is incremented for
any occurrence of boxed terms that reference the same data in any heap space, including process
heaps, mailbox messages, heap fragments, and so forth. Decrementing reference counts and free’ing
data in off-heap storage is discussed in more detail below, in the Garbage Collection section.

 |< 6 >|
+--> +=========================+======+
| | boxed-size (5) |100000| boxed[0]
| +-------------------------+------+
| | size (in bytes) | boxed[1]
| +--------------------------------+
| | flags 0| boxed[2]
| +--------------------------------+ off-heap storage
| | ptr >-------------- boxed[3] ---> +----------------------+

| +--------------------------------+ | prev |
 ^
| | cdr | boxed[4] +----------------------+
 | ListHead
| +--------------------------------+ | next |
 v
+-----------------< car | boxed[5] +----------------------+

 +================================+ | reference-count |
 |<---------- word-size --------->| +----------------------+
 | size |
 +----------------------+
 | data |
 ...
 | |
 +----------------------+

Note The size of a reference counted binary is stored both in the process heap (in the boxed term), as
well as in the off-heap storage. The size count in the off-heap storage is needed in order to report
the amount of data in use by binaries (e.g., via erlang:memory/0,1).

In addition, a reference-counted boxed term contains a cons-cell appended to the end of the boxed
term, which is used by the garbage collector for tracking references. The car of this cell points to
the boxed term, itself, and the cdr points to the “previous” cons cell associated with a reference
counted binary in the heap, if there is one, or the empty list (nil), otherwise. The cons cell forms
an element in the “Mark and Sweep Object” (MSO) list, used to reclaim unreferenced storage during
a garbage collection event.. See the Garbage Collection section, below, for more information about
the critical role of this structure in the process of reclaiming unused memory in the AtomVM virtual
machine.
Const Binaries

Const binaries are stored in the same manner as Reference Counted binaries, with the following

AtomVM documentation, Release 0.6.6+git.db7fa169

114 Chapter 9. Memory Management

exceptions:
• The low order bit of the flags field (boxed[2]) is 1, to indicate that the reference binary is

constant;
• The ptr field (boxed[3]) points directly to the constant storage (e.g., literal data stored in

a memory-mapped BEAM file);
• The trailing cons cell elements are unused, as dynamic memory management for static storage is

unnecessary. These values are initialized to nil.

This heap structure has the following representation:

 |< 6 >|
+=========================+======+
| boxed-size (5) |100000| boxed[0]
+-------------------------+------+
| size (in bytes) | boxed[1]
+--------------------------------+
| flags 1| boxed[2]
+--------------------------------+ static storage
| ptr >-------------- boxed[3] -------> +----------------------+
+--------------------------------+ | data |
| unused | boxed[4] | |
+--------------------------------+ ...
| unused | boxed[5] | |
+================================+ +----------------------+
|<---------- word-size --------->|

Match Binaries

Match binaries are represented as boxed terms containing a boxed header (boxed[0]), a type tag of
0x04 (000100b), and the following elements:

• a reference to either a binary or another match binary that refers to a binary;
• an offset in the referenced binary used by the match opcodes;
• a saved state used for backtracking unmatched clause heads;

Like a reference counted binary, a match binary includes a trailing cons cell, whose car element
points to the actual referenced binary (if the referenced binary is a reference-counted binary), and
whose cdr points to the “previous” cons cell associated with a reference counted binary in the heap.

Note If the referenced binary is not reference-counted, the trailing cons cell elements are unused and
are initialized to nil.

some
binary |< 6 >|
^ +=========================+======+
| | boxed-size (5) |100100| boxed[0]
| +-------------------------+------+
| | match-or-binary-ref | boxed[1]
| +--------------------------------+
| | offset | boxed[2]
| +--------------------------------+
| | saved | boxed[3]
| +--------------------------------+
| | cdr | boxed[4]
| +--------------------------------+
+--------------------< car | boxed[5]
 +================================+
 |<---------- word-size --------->|

 AtomVM documentation, Release 0.6.6+git.db7fa169

9.3. Boxed terms 115

A reference to a reference-counted binary counts as a reference, in which case the creation or copying
of a match binary results in the increment of the reference-counted binary’s reference count, and
the garbage collection of a match binary results in a decrement (and possible freeing) of a refer-
ence-counted binary. The trailing cons cell becomes an element of the context (or message) MSO list,
and plays a critical role in garbage collection. See the garbage collection section below for more infor-
mation about the role of this structure.
Sub-Binaries

Sub-binaries are represented as boxed terms containing a boxed header (boxed[0]), a type tag of
0x28 (001000b)
A sub-binary is a boxed term that points to a reference-counted binary, recording the offset into
the binary and the length (in bytes) of the sub-binary. An invariant for this term is that the offset +
length is always less than or equal to the length of the referenced binary.

 some
 refc
 binary |< 6 >|
 ^ +=========================+======+
 | | boxed-size (3) |001000| boxed[0]
 | +-------------------------+------+
 | | len | boxed[1]
 | +--------------------------------+
 | | offset | boxed[2]
 | +--------------------------------+
 +----------------< binary-ref | boxed[3]
 +================================+
 |<---------- word-size --------->|

Note than when a sub-binary is copied between processes (e.g., via erlang:send, or !), the sub-bi-
nary boxed term, as well as the boxed-term that manages the reference-counted binary is copied, as
well. Thus, sending a sub-binary to another process will result in an increment of the reference count
on the referenced binary, and similarly, garbage collection of the sub-binary will result in a decrement
of the referenced binary’s reference count.
A sub-binary may be created from both const (literal) and non-const reference-counted binaries. For
performance reasons, sub-binaries do not reference heap binaries.
Sub-binaries are created via the binary:part/3 and binary:split/2 Nifs, as well as via
/binary bit syntax specifier.

9.4 Lists

A list is, very simply, a cons cell, i.e., a sequence of two words, whose first word is a term (single word
or term pointer) representing the tail (cdr) of the list, and the second of which represents the head
(car) of the list.

+================================+
| tail | list_elem[0]
+--------------------------------+
| head | list_elem[1]
+================================+
| |
|<---------- word-size --------->|

Note Lists are typically terminated with the empty list ([]), represented by the nil term, described
above. However, nothing in Erlang requires that a sequence of cons cells is nil-terminated.

Unlike boxed terms, the low-order two bits of list pointers are 0x1 (01b):

AtomVM documentation, Release 0.6.6+git.db7fa169

116 Chapter 9. Memory Management

+=============================+==+
| term address |01| <- list pointer type (2 bits)
+=============================+==+
| |
|<---------- word-size --------->|

9.4.1 Strings

Strings are just lists of integers, but they are efficiently allocated at creation time so that a contiguous
block of cons cells are created in the heap. They otherwise have the same properties of a list described
above.

+================================+
| address-of-next-cons |01| elem[1]
+--------------------------------+
| int-value |
+--------------------------------+
| address-of-next-cons |01| elem[2]
+--------------------------------+
| int-value |
+--------------------------------+
| ... |01| elem[i]
+--------------------------------+
| ... |
+--------------------------------+
| nil | elem[n]
+--------------------------------+
| int-value |
+================================+
| |
|<---------- word-size --------->|

Note String elements may not remain contiguous after a garbage collection event.

9.4.2 Functions

Functions are represented as boxed terms containing a boxed header (boxed[0]), a type tag of 0x14
(010100b), followed by the raw memory address of the Module data structure in which the function
is defined, and the function index (so that the function can be located).
In addition, if there are any terms that are used outside of the scope of the function (i.e., closures),
these terms are copied from registers into the function objects

 |< 6 >|
+=========================+======+
| boxed-size (n) |010100| boxed[0]
+-------------------------+------+
| module address | boxed[1]
+--------------------------------+
| function index | boxed[2]
+--------------------------------+
| closure_1 | boxed[3]
+- - - - - - - - - - - - - - - - +
| ... |
+- - - - - - - - - - - - - - - - +
| closure_k | boxed[n-1]
+= = = = = = = = = = = = = = = = +
| |
|<---------- word-size --------->|

 AtomVM documentation, Release 0.6.6+git.db7fa169

9.4. Lists 117

9.5 Special Stack Types

Some terms are only used in the stack.

9.5.1 Continuation Pointer

A continuation pointer is a raw address. Because words are aligned on word boundaries, the low
order two bits of a continuation pointer are always 0x0 ((00000000)b):

+================================+
| raw address |00|
+================================+

9.5.2 Catch Labels

A catch label is used to indicate a position in code to which to jump in a try-catch expression.
The term occupies a single term, with the low order 6 bits having the value 0x1B, the high order 8 bits
holding the module index (m_i), and the middle 18 bits holding the catch label index (l_i):

|< 8 >|< 18 >|< 6 >|
+========+================+======+
| m_i | l_i |011011|
+========+================+======+
| |
|<---------- word-size --------->|

Module and catch label indices are stored outside of the process heap and are outside of the scope of
this document.

9.6 Garbage Collection

Garbage collection refers to the process of removing no-longer referenced term data stored in
the heap, making room for new storage, as the program requires. AtomVM implements Tracing
Garbage Collection, as does Erlang Garbage Collection. Unlike some garbage collection systems (e.g.,
as implemented by the Java Virtual Machine), garbage collection in Erlang-based systems, is
performed independently on the heap allocated for each active Erlang process; there is no single
shared heap for all running Erlang processes.
A given process heap and stack occupy a single region of malloc’d memory, and it is the job of
the Erlang VM to manage memory within the allocated regions. Because this region is fixed, every
allocation in the heap or stack results in less free space for the Erlang process. When free space
reaches a limit, AtomVM will run a garbage collection event, which will allocate a new block of
memory to hold the new heap and stack (the actual allocation depends on the heap growth strategy
as explained above), and then copy terms from the old heap and stack to the new heap and stack.
Any terms that no longer have references from term pointers in the old stack or registers are not
copied to the new stack, and are therefore “collected” as garbage. In addition, any objects in the old
heap that reference objects in shared memory (see reference counted binaries, above) are also
managed as part of this process, in a manner described below.

 +---------+ ------
 | new | ^
 | heap | |
 +---------+ |
 ---- +----------+ | | |
 ^ | | | | |
 | | old | | | | new

AtomVM documentation, Release 0.6.6+git.db7fa169

118 Chapter 9. Memory Management

https://en.wikipedia.org/wiki/Tracing_garbage_collection
https://en.wikipedia.org/wiki/Tracing_garbage_collection
https://erlang.org/doc/apps/erts/GarbageCollection.html

old | | heap | | | | malloc'd
malloc'd| | | ===> | | | region
region | +==========+ gc | free | |
 | | old | | | |
 v | stack | | | |
 ---- +----------+ | | |
 +---------+ |
 | new | |
 | stack | v
 +---------+ -----

+---+---+---+-------------------+---+
| 0 | 1 | 2 | | 15|
+---+---+---+-------------------+---+
registers

process dictionary
+--------+--------+
| k1 | v1 |
+--------+--------+
| k2 | v2 |
+--------+--------+
| ... |

Terms stored in the stack, registers, and process dictionary are either single-word terms (like atoms or
pids) or term references, i.e., single-word terms that point to boxed terms or list cells in the heap.
These terms constitute the “roots” of the memory graph of all “reachable” terms in the process.

9.6.1 When does garbage collection happen?

Garbage collection typically occurs as the result of a request for an allocation of a multi-word term in
the heap (e.g., a tuple, list, or binary, among other types), and when there is currently insufficient
space in the free space between the current heap and the current stack to accommodate the allocation.
Garbage collection is a synchronous operation in each Context (Erlang process), but conceptually no
other execution contexts are impacted (i.e., no global locks, other than those required for memory
allocation in the OS process heap).

9.6.2 Garbage Collection Steps

Garbage collection in AtomVM can be broken down into the following phases:
• Allocation of a new block of memory to store the new heap and stack;
• A “shallow copy” of all root terms (from the stack, registers, and process dictionary) into

the heap, as well as updates to the references in the stack, registers, and process dictionary;
• An iterative “scan and copy” of the new heap, until all “live” terms are copied to the new heap;
• A sweep of the “Mark Sweep Object” list;
• Deletion of the old heap.

The following subsections describe these phases in more detail.
Allocation

Garbage collection typically occurs as the result of a request for space on an Erlang process’s heap.
The amount of space requested is dependent on the kind of term being allocated, but in general,
AtomVM will check the amount of free space in the heap, and if it is below the amount of requested
space plus some extra (currently, 16 words), then a garbage collection will occur, with the requested
allocation space being the current size of the heap, plus the requested size, plus an extra 16 words.

 AtomVM documentation, Release 0.6.6+git.db7fa169

9.6. Garbage Collection 119

Allocation is a straightforward malloc in the (operating system) process heap of the requested set of
words. This block of storage will become the “new heap”, as opposed to the existing, or “old heap”.
Shallow Copy

The garbage collector starts by traversing the current root set, i.e., the terms contained in the stack,
registers, and keys and values in the process dictionary, and performs a “shallow copy” of the terms
that are in or referenced from these root terms from the old heap to the new heap, while at the same
time updating the values in the root set, as some of these values may be pointers into the old heap,
and therefore need to be updated to pointers in the new heap.
A shallow copy of a term depends on the type of the term being copied. If the term is a single-word
term, like an atom or pid, then the term only resides in the root set, itself, and nothing needs to be
copied from the old heap to the new heap. (The term may occur in the heap elsewhere, but as
an element of another term, like a tuple, for example.)
On the other hand, if the term in the root set points to a boxed term in the old heap, then three things
happen:

• The boxed term is copied from the old heap to the new heap. Note that if the term being copied
contains pointers to other boxed terms in the old heap, the pointers are not updated (yet); they
will be as part of the iterative scan and copy (see below);

• The first word of the existing boxed term that was copied is over-written with a marker value
(0x2b) in the old heap, and the second word is over-written with the address of the copied
boxed term in the new heap.

• The term in the root set is updated with the address of the copied boxed term in the new heap.

This process is best illustrated with a motivating example:

{foo, <<1,2,3,4,...,1024>>}

Suppose this term resides in the old heap, and some register[i] is a root term pointer to this tuple
in the heap:

+-> | | | |
| | | | |
| | | | | USED
| | | | |

| | | | |
| +--------------+ +=============+ <-- heap
| | tuple |<---+ | | addr
+--------------+				
	atom foo			
+--------------+				
+----< refc binary | | | | FREE
 +--------------+ | | |
 | | | | |
 | ... | | | ... |
 | | | | |
 old heap | new heap
 |
 ---+----------------+---
 ... | old-ptr | ...
 ---+----------------+---
 register[i]

The boxed term is copied to the new heap, overwritten with the marked header 0x2b, along with
a pointer to the new term, and the root term is updated with the same address:

+-> | | <--------+ | |
| | | | | |

AtomVM documentation, Release 0.6.6+git.db7fa169

120 Chapter 9. Memory Management

| | | | | |
| | | | | |

| | | | | |
| +--------------+ >>>>>>>>>|>> +-------------+
| | 0x2b | +--+---|-> | tuple | USED
| +--------------+ | | | +-------------+
| | ptr --------+ | | | atom foo |
| +--------------+ | | +-------------+
+----< refc binary | | +----< refc binary|
 +--------------+ >>>>>|>>>>>>>+=============+ <-- new
 | | | COPY | | heap
 | ... | | | | addr
 old heap | | |
 | | | FREE
 |
 |
 ---+----------------+---
 ... | new-ptr | ...
 ---+----------------+---
 register[i]

Note that the first term of the tuple (atom foo) is copied to the new heap, but the pointer to the refc
binary is out of date – it still points to a value in the old heap. This will be corrected in the iterative
scan and copy phase, below.
After a shallow copy of the root set, all terms immediately reachable from the root set have been
copied to the new heap, and any boxed terms they reference have been marked as being moved.
The new heap consists of a set of contiguous copied boxed terms from the old heap, starting from
the base address of the heap, to some higher address in the heap, but less than or equal to
the maximum heap size on the new heap.
Iterative Scan and Copy

The iterative scan and copy phase works as follows:
• Starting with the newly created region used in the shallow copy phase in the new heap, iterate

over every term in the region (call this the “scan©” region);
• If any term in this region is a reference to a term on the old heap that has not been marked as

copied, perform a shallow copy of it (as described above) to the new heap, but starting at
the next free address below the region being iterated over;

• Note that after iterating over all such terms in the scan and copy region, all terms are “com-
plete”, in that there are no references to boxed terms in the old heap in that region. We have,
however, created a new region which may have references to boxed terms in the old heap;

• So we repeat the process on the new region, which will complete the current scan© region,
but which in turn may create a new region of copied terms;

• The process is repeated until no new regions have been introduced.

The following sequence of iterative additions to the new heap illustrates this process:

+---------------+ ===> +---------------+ ===> +---------------+ ...
scan©		complete		complete
region		region		region
+---------------+ +---------------+ +---------------+
 | newly | | scan© |

 AtomVM documentation, Release 0.6.6+git.db7fa169

9.6. Garbage Collection 121

 | copied | | region |
 | terms | | |
 +---------------+ +---------------+
 |newlycpiedterms|
 +---------------+

 ... ===> +---------------+ ===> +---------------+
 | complete | | complete |
 | region | | region |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 +---------------+ | |
 | scan© | | |
 +---------------+ +---------------+

At the end of the iterative scan and copy, all reachable terms in the old heap will be copied to the new
heap, and no boxed terms in the old heap will contain pointers to terms in the old heap. Any terms
that have not been copied to the new heap are “garbage”, as there are no longer any paths to them
from the root set, and can therefore be destroyed,
MSO Sweep

As mentioned in the section above on binaries, AtomVM supports reference-counted binaries,
whereby binaries of a sufficiently large size (>64 bytes) are allocated outside of the process heap, and
are instead referenced from boxed terms in the heap. This way, binaries, which are immutable objects,
can be shared between processes without incurring the time and space cost of a large data copy.
In order to manage the memory associated with such binaries, AtomVM tracks references to these
off-heap binaries via the “Mark and Sweep Object” list, a list that keeps track of which boxed terms in
the process heap have a reference to an off-heap binary. When such a boxed term is copied (e.g., from
a heap to a mailbox on a send, or from a mailbox to a heap on a receive), the reference count is
incremented on the off-heap binary.
The MSO list is formed via the cons cells that are appended to reference counted binary boxed terms
in the process heap. The list is initially empty (nil), but as reference counted binaries are added to
the process heap, they are pre-pended to the MSO list for the process (on the mailbox message, as
reference-counted binaries in the mailbox need to be managed, as well).
The following diagram illustrates a set of two reference counted binaries in a process heap:

 | |
+-----> +-------------------+
	refc
	binary
+-------------------+ <----+	
	nil
+-------------------+	
+---------------< car | |
 +-------------------+ |
 | | |
 ...
 | | |

AtomVM documentation, Release 0.6.6+git.db7fa169

122 Chapter 9. Memory Management

+-----> +-------------------+ |
	refc	
	binary	
+-------------------+ <----	-------+	
	cdr >-------------+	
+-------------------+		
+--------------< car | |
 +-------------------+ |
 | | |
 | | |
 ... |
 |
 +-------^--------+
 | mso_list |
 +----------------+

After the new heap has been scanned and copied, as described above, the MSO list is traversed to
determine if any reference-counted binaries are no longer referenced from the process heap. If any
reference counted binaries in the heap have not been marked as moved from the old heap, they are,
effectively, no longer referenced from the root set, and the reference count on the corresponding
off-heap binary can be decremented. Furthermore, when the reference count reaches 0, the binaries
can then be deleted.

Note Const binaries, while they have slots for entry into the MSO list, nonetheless are never “stitched”
into the MSO list, as the binary data they point to is const, endures for the lifecycle of the program,
and is never deleted. Match binaries, on the other hand, do count as references, and can therefore be
stitched into the MSO list. However, when they are, the reference counted binaries they point to are
the actual binaries in the process heap, not the match binaries, as with the case of refc binaries on
the process heap.

Deletion

Once all terms have been copied from the old heap to the new heap, and once the MSO list has been
swept for unreachable references, the old heap is simply discarded via the free function.

 AtomVM documentation, Release 0.6.6+git.db7fa169

9.6. Garbage Collection 123

10 Packbeam Format

AtomVM makes use of the packbeam format for aggregating beam and other file types into a single
file that is used as the code base for an AtomVM application. Typically, on an embedded device, pack-
beam files are uploaded (e.g., via serial connection) to a specific location on flash media.
The AtomVM runtime will locate the entrypoint into the application, and use the beam and other files
flashed to the local media to run the uploaded application.
AtomVM provides a simple tool for generating packbeam files, but other tools have emerged for
manipulation packbeam files using standard Erlang and Elixir tool chains, notably Mix and rebar3.
This document describes the packbeam format, so that both AtomVM and upstream/downstream
tooling have a reference document on which to base implementations.

10.1 Overview

Packbeam files are binary-encoded aggregations of BEAM and plain data files. At a high level, a pack-
beam file consists of a packbeam header, followed by a sequence of files (beam or otherwise), each of
which is prefixed with a header, including data about the file (name, size, flags, etc).
All binary integer values are 32-bit, in network order (big-endian). Headers and encoded files are
padded when necessary and aligned on 4-byte boundaries.
At present, the AtomVM runtime treats data in packbeam files as read-only data. There is no support
for modifying the contents on an AtomVM file by the runtime.

10.2 Packbeam Header

All AtomVM files begin with the packbeam header, a fixed 24-byte sequence of octets:

0x23, 0x21, 0x2f, 0x75,
0x73, 0x72, 0x2f, 0x62,
0x69, 0x6e, 0x2f, 0x65,
0x6e, 0x76, 0x20, 0x41,
0x74, 0x6f, 0x6d, 0x56,
0x4d, 0x0a, 0x00, 0x00

The ASCII encoding of this sequence is
#!/usr/bin/env AtomVM\n

followed by two nil (0x00) bytes.
The packbeam header is followed by a sequence of 0 or more encoded files. The number of files in
a packbeam file is not indicated in the packbeam header; however, packbeam files do contain a special
end file header, marking the end of the sequence of encoded files.

10.3 File encodings

Each embedded file in a packbeam file contains a file header, followed by the file contents.

10.3.1 File Header

The file header consists of the following 4 fields:
• size (32 bit, big-endian)

AtomVM documentation, Release 0.6.6+git.db7fa169

124 Chapter 10. Packbeam Format

• flags (32-bit, big endian)
• reserved (32-bit, big-endian, currently unused)
• module_name (null-terminated sequence of bytes)

The size field indicates the size (in bytes) of the encoded file following the header. This size includes
the file content length, in addition to any padding that may have been added to the file, in order for it
to align on a 4-byte boundary.
Currently, the two low-order bits of the flags field are used. 0x02 indicates the file is a BEAM file,
and 0x01 indicates that the file contains a start/0 function, and is therefore suitable as an entry-
point to start code execution.
When AtomVM starts, it will scan the BEAM files in the AtomVM file, from start to finish, with which
it is initialized to find the entrypoint to start code execution. It will start execution on the first BEAM
file with a start/0 function, i.e., whose flags mask against 0x03. It is conventional, but not
required, for the first file in an AtomVM file to be a BEAM file that has a start/0 entrypoint.
The reserved field is currently unused.
The module_name is variable length, null terminated sequence of characters. Because the module
name is variable-length, the header may be padded with null characters (0x00), in order to align
the start of the file contents on a 4-byte boundary.

10.3.2 Example

The following BEAM header indicates a BEAM file with a length of 308 bytes (0x00000134), with
a start/0 entrypoint (0x00000003), and named mylib.beam (0x6D796C69 622E6265
616D00). The header has a 1-byte padding of null (0x00) characters.

00000134 00000003 00000000 6D796C69 622E6265 616D0000

10.3.3 BEAM files

BEAM files obey IFF encoding as detailed here, but certain information in BEAM files is stripped out
in order to minimize the amount of data stored on flash.
The following BEAM chunks are included in BEAM files:

• AtU8

• Code

• ExpT

• LocT

• ImpT

• LitU

• FunT

• StrT

• LitT

Any other chunks are stripped out of the BEAM files before insertion into AVM files.
In addition, data in the literals table (LitT) are uncompressed before insertion into AVM files, as
the AtomVM runtime does not include support for zlib decompression.
BEAM files may be padded at the end with a sequence of 1-3 null (0x00) characters, in order to align
on 4-byte boundaries.

Note The module_name field in the file header will only contain the “base” name of the BEAM file,

 AtomVM documentation, Release 0.6.6+git.db7fa169

10.3. File encodings 125

https://en.wikipedia.org/wiki/Interchange_File_Format
http://www.erlang.se/~bjorn/beam_file_format.html

i.e., the file name stripped of any path information.

10.3.4 Normal Files

Normal files (e.g., text files, data files, etc.) can be stored in packbeam AVM files, as well as BEAM
files. For example, a normal file might contain static configuration information, or data that is inter-
preted at runtime.
Normal files contain a 32-bit big-endian size prefix, indicating the size of the file data (without
padding). Note that the size field in the file header includes the size of the data with padding, if
applicable.
The AtomVM runtime provides access to data files via the atomvm:read_priv/2 NIF. This func-
tion will create a path name formed by the App (atom) and Path (string) terms provided by this func-
tion, separated by "/priv/". For example, the expression

atomvm:read_priv(mylib, "sample.txt")

yields a binary containing the contents of mylib/priv/sample.txt, if it exists, in the AtomVM
packbeam file.
As a consequence, normal files should be included in packbeam files using module names that obey
the above patterns.

Tip Normal file names may encode virtual directory names, such as mylib/priv/another
/sample/text/file. There is no requirement that the Path component of a normal file be
a simple file name.

10.3.5 end file

Packbeam files end with a special end header. The size field of the end header is 0 bytes.
Example end header

The following sequence of bytes encodes the end header:

00000000 00000000 00000000 656E6400

AtomVM documentation, Release 0.6.6+git.db7fa169

126 Chapter 10. Packbeam Format

Chapter 11

API Reference Documentation

11.1 Erlang Libraries

11.1.1 estdlib

The estdlib library
Modules

Module base64

• Description
• Function Index
• Function Details

An implementation of a subset of the Erlang/OTP base64 interface.
Description

This module is designed to be API-compatible with the Erlang/OTP base64 module, with
the following exceptions:

• No support for decoding data with whitespace in base64 data
• No support for mime decoding functions

Function Index

Function Details

decode/1

Data: the data to decode
returns: the base-64 data decoded, as a binary
Base-64 decode a binary or string, outputting a binary.
This function will raise a badarg exception if the supplied data is not valid base64-encoded data.
decode_to_string/1

Data: the data to decode
returns: the base-64 data decoded, as a string
Base-64 decode a binary or string, outputting a string.
This function will raise a badarg exception if the supplied data is not valid base64-encoded data.

 127

encode/1

Data: the data to encode
returns: the base-64 data encoded, as a binary
Base-64 encode a binary or string, outputting a binary.
encode_to_string/1

Data: the data to encode
returns: the base-64 data encoded, as a string
Base-64 encode a binary or string, outputting a string.
Module binary

• Description
• Function Index
• Function Details

An implementation of a subset of the Erlang/OTP binary interface.
Function Index

Function Details

at/2

Binary: binary to get a byte fromIndex: 0-based index of the byte to return
returns: value of the byte from the binary
Get a byte from a binary by index.
decode_hex/1

Data: hex encoded binary to decode
returns: decoded binary
Decodes a hex encoded binary into a binary.
encode_hex/1

Data: binary data to convert into hex encoded binary
returns: hex encoded binary
Encodes a binary into a hex encoded binary using the specified case for the hexadecimal digits “a” to
“f”.
encode_hex/2

Data: binary data to convert into hex encoded binaryCase: which case to encode into
returns: hex encoded binary
Encodes a binary into a hex encoded binary using the specified case for the hexadecimal digits “a” to
“f”.
part/3

Binary: binary to extract a subbinary fromPos: 0-based index of the subbinary to extractLen: length,
in bytes, of the subbinary to extract.
returns: a subbinary from Binary
Get the part of a given binary. A negative length can be passed to count bytes backwards.
split/2

Binary: binary to splitPattern: pattern to perform the split

AtomVM documentation, Release 0.6.6+git.db7fa169

128 Chapter 11. API Reference Documentation

returns: a list composed of one or two binaries
Equivalent to split(Binary, Pattern, []).
Split a binary according to pattern. If pattern is not found, returns a singleton list with the passed
binary. Unlike Erlang/OTP, pattern must be a binary.
split/3

Binary: binary to splitPattern: pattern to perform the split
returns: a list composed of one or two binaries
Split a binary according to pattern. If pattern is not found, returns a singleton list with the passed
binary. Unlike Erlang/OTP, pattern must be a binary. Only implemented option is global
Module calendar

• Description
• Data Types
• Function Index
• Function Details

A partial implementation of the Erlang/OTP calendar functions.
Description

This module provides an implementation of a subset of the functionality of the Erlang/OTP calendar
functions.
All dates conform to the Gregorian calendar. This calendar was introduced by Pope Gregory XIII in
1582 and was used in all Catholic countries from this year. Protestant parts of Germany and
the Netherlands adopted it in 1698, England followed in 1752, and Russia in 1918 (the October revolu-
tion of 1917 took place in November according to the Gregorian calendar).
The Gregorian calendar in this module is extended back to year 0. For a given date, the gregorian day
is the number of days up to and including the date specified.
Data Types
date()
datetime()
day()
day_of_week()
gregorian_days()
hour()
minute()
month()
second()
time()
year()

Function Index

Function Details

date_to_gregorian_days/1

Date: the date to get the gregorian day count of
returns: Days number of days
Equivalent to date_to_gregorian_days(Year, M, D).
Year cannot be abbreviated.

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 129

For example, 93 denotes year 93, not 1993. The valid range depends on the underlying operating
system. The date tuple must denote a valid date.
date_to_gregorian_days/3

Year: ending yearM: ending monthD: ending day
returns: Days number of days
Computes the number of gregorian days starting with year 0 and ending at the specified date.
datetime_to_gregorian_seconds/1

DateTime: the date and time to convert to seconds
returns: Seconds number of seconds
Computes the number of gregorian seconds starting with year 0 and ending at the specified date and
time.
day_of_the_week/1

Date: the date for which to retrieve the weekday
returns: Weekday day of the week
Equivalent to day_of_the_week(Y, M, D).
Computes the day of the week from the specified date tuple {Year, Month, Day}. Returns the day of
the week as 1: Monday, 2: Tuesday, and so on.
day_of_the_week/3

Y: year of the desired dayM: month of the desired dayD: year of the desired day
returns: Weekday day of the week
Computes the day of the week from the specified Year, Month, and Day. Returns the day of the week
as 1: Monday, 2: Tuesday, and so on.
system_time_to_universal_time/2

Time: the time, as an integer, in the specified unitTimeUnit: the time unit
returns: DateTime The date and time (in UTC) converted from the specified time and time unit
Convert an integer time value to a date and time in UTC.
Module code

• Description
• Function Index
• Function Details

An implementation of a subset of the Erlang/OTP code interface.
Function Index

Function Details

ensure_loaded/1

Module: module to load
returns: Tuple {module, Module} if module is loaded or {error, embedded}
Try to load a module if it’s not already loaded. AtomVM works in an embedded-like mode where
modules are loaded at start-up but modules can be loaded explicitely as well (especially from a binary
with load_binary/3). So this function can be used to determine if a module is loaded. It is called by
Elixir Code module.

AtomVM documentation, Release 0.6.6+git.db7fa169

130 Chapter 11. API Reference Documentation

load_abs/1

Filename: path to the beam to open, without .beams suffix
returns: A tuple with the name of the module
Load a module from a path. Error return result type is different from Erlang/OTP.
load_binary/3

Module: name of the module to loadFilename: path to the beam (unused)Binary: binary of
the module to load
returns: A tuple with the name of the module
Load a module from a binary. Error return result type is different from Erlang/OTP. Also unlike
Erlang/OTP, no check is performed to verify that Module matches the name of the loaded module.
Module crypto

• Data Types
• Function Index
• Function Details

Data Types
cipher_iv()
cipher_no_iv()
crypto_opt()
crypto_opts()
digest()
hash_algorithm()
padding()

Function Index

Function Details

crypto_one_time/4

Cipher: a supported cipherKey: the encryption / decryption keyData: to be crypted or
encryptedFlagOrOptions: either just true for encryption (or false for decryption), or a proplist for
any additional option
returns: Returns crypted or encrypted data.
Encrypted/decrypt data using given cipher and key
crypto_one_time/5

Cipher: a supported cipher that makes use of IVKey: the encryption / decryption keyIV: an initial-
ization vectorData: to be crypted or encryptedFlagOrOptions: either just true for encryption (or
false for decryption), or a proplist for any additional option such as padding.
returns: Returns crypted or encrypted data.
Encrypted/decrypt data using given cipher, key, IV.
hash/2

Type: the hash algorithmData: the data to hash
returns: Returns the result of hashing the supplied data using the supplied hash algorithm.
Hash data using a specified hash algorithm.
strong_rand_bytes/1

N: desired length of cryptographically secure random data

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 131

returns: Returns Cryptographically secure random data of length N
Generate N cryptographically secure random octets and return the result in a binary.
Module erlang

• Description
• Data Types
• Function Index
• Function Details

An implementation of the Erlang/OTP erlang module, for functions that are not already defined as
NIFs.
Data Types
atom_encoding()
demonitor_option()
float_format_option()
heap_growth_strategy()
mem_type()
spawn_option()
time_unit()
timestamp()

Function Index

Function Details

apply/2

Function: Function to callArgs: Parameters to pass to function (max 6)
returns: Returns the result of Function(Args).
Returns the result of applying Function to Args. The arity of the function is the length of Args. Exam-
ple:

 > apply(fun(R) -> lists:reverse(R) end, [[a, b, c]]).
 [c,b,a]
 > apply(fun erlang:atom_to_list/1, ['AtomVM']).
 "AtomVM"

If the number of arguments are known at compile time, the call is better written as Function(Arg1,
Arg2, …, ArgN).
apply/3

Module: Name of moduleFunction: Exported function nameArgs: Parameters to pass to function
(max 6)
returns: Returns the result of Module:Function(Args).
Returns the result of applying Function in Module to Args. The applied function must be exported
from Module. The arity of the function is the length of Args. Example:

 > apply(lists, reverse, [[a, b, c]]).
 [c,b,a]
 > apply(erlang, atom_to_list, ['AtomVM']).
 "AtomVM"

If the number of arguments are known at compile time, the call is better written as Module:Func-
tion(Arg1, Arg2, …, ArgN).

AtomVM documentation, Release 0.6.6+git.db7fa169

132 Chapter 11. API Reference Documentation

atom_to_binary/1

Atom: Atom to convert
returns: a binary with the atom’s name
Convert an atom to a binary, defaults to utf8. Only latin1 encoding is supported.
atom_to_binary/2

Atom: Atom to convertEncoding: Encoding for conversion (any of latin1, utf8 or unicode)
returns: a binary with the atom’s name
Convert an atom to a binary. Only latin1 encoding is supported.
atom_to_list/1

Atom: Atom to convert
returns: a string with the atom’s name
Convert an atom to a string.
binary_to_atom/1

Binary: Binary to convert to atom
returns: an atom from passed binary
Convert a binary to atom, defaults to utf8.
binary_to_atom/2

Binary: Binary to convert to atomEncoding: encoding for conversion (any of latin1, utf8 or unicode)
returns: an atom from passed binary
Convert a binary to atom.
binary_to_integer/1

Binary: Binary to parse for integer
returns: the integer represented by the binary
Parse the text in a given binary as an integer.
binary_to_integer/2

Binary: Binary to parse for integer
returns: the integer represented by the binary
Parse the text in a given binary as an integer.
binary_to_list/1

Binary: Binary to convert to list
returns: a list of bytes from the binary
Convert a binary to a list of bytes.
binary_to_term/1

Binary: binary to decode
returns: A term decoded from passed binary
Decode a term that was previously encodes with term_to_binary/1 This function should be
mostly compatible with its Erlang/OTP counterpart. Unlike modern Erlang/OTP, resources are
currently serialized as empty binaries and cannot be unserialized.
demonitor/1

Monitor: reference of monitor to remove

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 133

returns: true
Remove a monitor
demonitor/2

Monitor: reference of monitor to removeOptions: options list
returns: true
Remove a monitor, with options. If flush, monitor messages are flushed and guaranteed to not be
received. If info, return true if monitor was removed, false if it was not found. If both options are
provivded, return false if flush was needed.
display/1

Term: term to print
returns: true
Print a term to stdout.
erase/1

Key: key to erase from the process dictionary
returns: the previous value associated with this key or undefined
Erase a key from the process dictionary.
exit/1

Reason: reason for exit
Raises an exception of class exit with reason Reason. The exception can be caught. If it is not,
the process exits. If the exception is not caught the signal is sent to linked processes. In this case, if
Reason is kill, it is not transformed into killed and linked processes can trap it (unlike exit/2).
exit/2

Process: target processReason: reason for exit
returns: true
Send an exit signal to target process. The consequences of the exit signal depends on Reason, on
whether Process is self() or another process and whether target process is trapping exit. If Reason is
not kill nor normal:

• If target process is not trapping exits, it exits with Reason
• If traget process is trapping exits, it receives a message {'EXIT', From, Reason} where
From is the caller of exit/2.

If Reason is kill, the target process exits with Reason changed to killed. If Reason is normal
and Process is not self():

• If target process is not trapping exits, nothing happens.
• If traget process is trapping exits, it receives a message {'EXIT', From, normal} where
From is the caller of exit/2.

If Reason is normal and Process is self():
• If target process is not trapping exits, it exits with normal.
• If traget process is trapping exits, it receives a message {'EXIT', From, normal} where
From is the caller of exit/2.

float_to_binary/1

Float: Float to convert

AtomVM documentation, Release 0.6.6+git.db7fa169

134 Chapter 11. API Reference Documentation

returns: a binary with a text representation of the float
Convert a float to a binary.
float_to_binary/2

Float: Float to convertOptions: Options for conversion
returns: a binary with a text representation of the float
Convert a float to a binary.
float_to_list/1

Float: Float to convert
returns: a string with a text representation of the float
Convert a float to a string.
float_to_list/2

Float: Float to convertOptions: Options for conversion
returns: a string with a text representation of the float
Convert a float to a string.
fun_to_list/1

Fun: function to convert to a string
returns: a string representation of the function
Create a string representing a function.
function_exported/3

Module: module to testFunction: function to testArity: arity to test
returns: true if Module exports a Function with this Arity
Determine if a function is exported
garbage_collect/0

returns: true
Run a garbage collect in current process
garbage_collect/1

Pid: pid of the process to garbage collect
returns: true or false if the process no longer exists
Run a garbage collect in a given process. The function returns before the garbage collect actually
happens.
get/1

Key: key in the process dictionary
returns: value associated with this key or undefined
Return a value associated with a given key in the process dictionary
get_module_info/1

Module: module to get info for
returns: A list of module info tuples
Get info for a given module. This function is not meant to be called directly but through
Module:module_info/0 exported function.

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 135

get_module_info/2

Module: module to get info forInfoKey: info to get
returns: A term representing info for given module
Get specific info for a given module. This function is not meant to be called directly but through
Module:module_info/1 exported function. Supported info keys are module, exports, compile
and attributes.
group_leader/0

returns: Pid of group leader or self() if no group leader is set.
Return the pid of the group leader of caller.
group_leader/2

Leader: pid of process to set as leaderPid: pid of process to set a Leader
returns: true
Set the group leader for a given process.
integer_to_binary/1

Integer: integer to convert to a binary
returns: a binary with a text representation of the integer
Convert an integer to a binary.
integer_to_binary/2

Integer: integer to convert to a binaryBase: base for representation
returns: a binary with a text representation of the integer
Convert an integer to a binary.
integer_to_list/1

Integer: integer to convert to a string
returns: a string representation of the integer
Convert an integer to a string.
integer_to_list/2

Integer: integer to convert to a stringBase: base for representation
returns: a string representation of the integer
Convert an integer to a string.
iolist_to_binary/1

IOList: IO list to convert to binary
returns: a binary with the bytes of the IO list
Convert an IO list to binary.
is_map/1

Map: the map to test
returns: true if Map is a map; false, otherwise.
Return true if Map is a map; false, otherwise.
This function may be used in a guard expression.
is_map_key/2

Key: the keyMap: the map

AtomVM documentation, Release 0.6.6+git.db7fa169

136 Chapter 11. API Reference Documentation

returns: true if Key is associated with a value in Map; false, otherwise.
Return true if Key is associated with a value in Map; false, otherwise.
This function raises a {badmap, Map} error if Map is not a map.
This function may be used in a guard expression.
is_process_alive/1

Pid: pid of the process to test
returns: true if the process is alive, false otherwise
Determine if a process is alive
is_record/2

RecordTag: atom representing tuple tag
Returns true if Term is a tuple and its first element is RecordTag, false otherwise.
link/1

Pid: process to link to
returns: true
Link current process with a given process.
list_to_atom/1

String: string to convert to an atom
returns: an atom from the string
Convert a string into an atom. Unlike Erlang/OTP 20+, atoms are limited to ISO-8859-1 characters.
The VM currently aborts if passed unicode characters. Atoms are also limited to 255 characters. Errors
with system_limit_atom if the passed string is longer.
See also: list_to_existing_atom/1.
list_to_binary/1

IOList: iolist to convert to binary
returns: a binary composed of bytes and binaries from the list
Convert a list into a binary. Errors with badarg if the list is not an iolist.
list_to_existing_atom/1

String: string to convert to an atom
returns: an atom from the string
Convert a string into an atom. This function will error with badarg if the atom does not exist
See also: list_to_atom/1.
list_to_integer/1

String: string to convert to integer
returns: an integer value from its string representation
Convert a string (list of characters) to integer. Errors with badarg if the string is not a representation
of an integer.
list_to_integer/2

String: string to convert to integerBase: string to convert to integer
returns: an integer value from its string representation
Convert a string (list of characters) to integer in specified base. Errors with badarg if the string is not
a representation of an integer or the base is out of bounds.

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 137

list_to_tuple/1

List: list to convert to tuple
returns: a tuple with elements of the list
Convert a list to a tuple with the same size.
localtime/0

returns: A tuple representing the current local time.
Return the current time and day for system local timezone.
See also: universaltime/0.
make_ref/0

returns: a new reference
Create a new reference
map_get/2

Key: the key to getMap: the map from which to get the value
returns: the value in Map associated with Key, if it exists.
Get the value in Map associated with Key, if it exists.
This function raises a {badkey, Key} error if ‘Key’ does not occur in Map or a {badmap, Map} if
Map is not a map.
This function may be used in a guard expression.
map_size/1

Map: the map
returns: the size of the map
Returns the size of (i.e., the number of entries in) the map
This function raises a {badmap, Map} error if Map is not a map.
This function may be used in a guard expression.
max/2

A: any termB: any term
returns: A if A > B; B, otherwise.
Return the maximum value of two terms
Terms are compared using > and follow the ordering principles defined in https://www.erlang.org
/doc/reference_manual/expressions.html#term-comparisons
md5/1

Data: data to compute hash of, as a binary.
returns: the md5 hash of the input Data, as a 16-byte binary.
Computes the MD5 hash of an input binary, as defined by https://www.ietf.org/rfc/rfc1321.txt
memory/1

Type: the type of memory to request
returns: the amount of memory (in bytes) used of the specified type
Return the amount of memory (in bytes) used of the specified type
min/2

A: any termB: any term

AtomVM documentation, Release 0.6.6+git.db7fa169

138 Chapter 11. API Reference Documentation

returns: A if A < B; B, otherwise.
Return the minimum value of two terms
Terms are compared using < and follow the ordering principles defined in https://www.erlang.org
/doc/reference_manual/expressions.html#term-comparisons
monitor/2

Type: type of monitor to createPid: pid of the object to monitor
returns: a monitor reference
Create a monitor on a process or on a port. When the process or the port terminates, the following
message is sent to the caller of this function:

 {'DOWN', MonitorRef, Type, Pid, Reason}

Unlike Erlang/OTP, monitors are only supported for processes and ports.
monotonic_time/1

Unit: time unit
returns: monotonic time in the specified units
Return the monotonic time in the specified units.
Monotonic time varies from system to system, and should not be used to determine, for example
the wall clock time.
Instead, monotonic time should be used to compute time differences, where the function is guaran-
teed to return a (not necessarily strictly) monotonically increasing value.
For example, on ESP32 system, monotonic time is reported as the difference from the current time and
the time the ESP32 device was started, whereas on UNIX systems the value may vary among UNIX
systems (e.g., Linux, macOS, FreeBSD).
open_port/2

PortName: Tuple {spawn, Name} identifying the portOptions: Options, meaningful for the port
returns: A pid identifying the open port
Open a port. Unlike Erlang/OTP, ports are identified by pids.
pid_to_list/1

Pid: pid to convert to a string
returns: a string representation of the pid
Create a string representing a pid.
process_flag/2

Flag: flag to changeValue: new value of the flag
returns: Previous value of the flag
Set a flag for the current process. When trap_exit is true, exit signals are converted to messages

 {'EXIT', From, Reason}

and the process does not exit if Reason is not normal.
process_info/2

Pid: the process pid.Key: key used to find process information.
Pid: the process pid.Key: key used to find process information.
Pid: the process pid.Key: key used to find process information.
Pid: the process pid.Key: key used to find process information.

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 139

Pid: the process pid.Key: key used to find process information.
Pid: the process pid.Key: key used to find process information.
returns: process information for the specified pid defined by the specified key.
Return process information.
This function returns information about the specified process. The type of information returned is
dependent on the specified key.
The following keys are supported:

• heap_size the number of words used in the heap (integer), including the stack but excluding
fragments

• total_heap_size the number of words used in the heap (integer) including fragments
• stack_size the number of words used in the stack (integer)
• message_queue_len the number of messages enqueued for the process (integer)
• memory the estimated total number of bytes in use by the process (integer)
• links the list of linked processes

Specifying an unsupported term or atom raises a bad_arg error.
processes/0

returns: A list of pids of all processes
Return a list of all current processes. Compared to Erlang/OTP, this function also returns native
processes (ports).
put/2

Key: key to add to the process dictionaryValue: value to store in the process dictionary
returns: the previous value associated with this key or undefined
Store a value with a given key in the process dictionary.
ref_to_list/1

Ref: reference to convert to a string
returns: a string representation of the reference
Create a string representing a reference.
register/2

Name: name of the process to registerPid: pid of the process to register
returns: true
Register a name for a given process. Processes can be registered with several names. Unlike Erlang
/OTP, ports are not distinguished from processes. Errors with badarg if the name is already regis-
tered.
send/2

Pid: process to send the message toMessage: message to send
returns: the sent message
Send a message to a given process
send_after/3

Time: time in milliseconds after which to send the message.Dest: Pid or server name to which to
send the message.Msg: Message to send to Dest after Time ms.
returns: a reference that can be used to cancel the timer, if desired.

AtomVM documentation, Release 0.6.6+git.db7fa169

140 Chapter 11. API Reference Documentation

Send Msg to Dest after Time ms.
spawn/1

Function: function to create a process from
returns: pid of the new process
Create a new process
spawn/3

Module: module of the function to create a process fromFunction: name of the function to create
a process fromArgs: arguments to pass to the function to create a process from
returns: pid of the new process
Create a new process by calling exported Function from Module with Args.
spawn_link/1

Function: function to create a process from
returns: pid of the new process
Create a new process and link it.
spawn_link/3

Module: module of the function to create a process fromFunction: name of the function to create
a process fromArgs: arguments to pass to the function to create a process from
returns: pid of the new process
Create a new process by calling exported Function from Module with Args and link it.
spawn_opt/2

Function: function to create a process fromOptions: additional options.
returns: pid of the new process
Create a new process.
spawn_opt/4

Module: module of the function to create a process fromFunction: name of the function to create
a process fromArgs: arguments to pass to the function to create a process fromOptions: additional
options.
returns: pid of the new process
Create a new process by calling exported Function from Module with Args.
start_timer/3

Time: time in milliseconds after which to send the timeout message.Dest: Pid or server name to
which to send the timeout message.Msg: Message to send to Dest after Time ms.
returns: a reference that can be used to cancel the timer, if desired.
Start a timer, and send {timeout, TimerRef, Msg} to Dest after Time ms, where TimerRef is the refer-
ence returned from this function.
system_flag/2

Key: key used to change system flag.Value: value to change
returns: previous value of the flag.
Update system flags.
This function allows to modify system flags at runtime.
The following key is supported on SMP builds:

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 141

• schedulers_online the number of schedulers online

Specifying an unsupported atom key will result in a bad_arg error. Specifying a term that is not
an atom will result in a bad_arg error.
system_info/1

Key: key used to find system information.
returns: system information defined by the specified key.
Return system information.
This function returns information about the system on which AtomVM is running. The type of infor-
mation returned is dependent on the specified key.
The following keys are supported on all platforms:

• process_count the number of processes running in the node (integer)
• port_count the number of ports running in the node (integer)
• atom_count the number of atoms currently allocated (integer)
• system_architecture the processor and OS architecture (binary)
• version the version of the AtomVM executable image (binary)
• wordsize the number of bytes in a machine word on the current platform (integer)
• schedulers the number of schedulers, equal to the number of online processors (integer)
• schedulers_online the current number of schedulers (integer)

The following keys are supported on the ESP32 platform:
• esp32_free_heap_size the number of (noncontiguous) free bytes in the ESP32 heap (integer)
• esp32_largest_free_block the number of the largest contiguous free bytes in the ESP32 heap

(integer)
• esp32_minimum_free_size the smallest number of free bytes in the ESP32 heap since boot (inte-

ger)
• esp32_chip_info Details about the model and capabilities of the ESP32 device (map)

Additional keys may be supported on some platforms that are not documented here.
Specifying an unsupported atom key will results in returning the atom ‘undefined’.
Specifying a term that is not an atom will result in a bad_arg error.
system_time/1

Unit: Unit to return system time in
returns: An integer representing system time
Get the current system time in provided unit.
term_to_binary/1

Term: term to encode
returns: A binary encoding passed term.
Encode a term to a binary that can later be decoded with binary_to_term/1. This function should
be mostly compatible with its Erlang/OTP counterpart. Unlike modern Erlang/OTP, resources are
currently serialized as empty binaries.
timestamp/0

returns: A tuple representing the current timestamp.

AtomVM documentation, Release 0.6.6+git.db7fa169

142 Chapter 11. API Reference Documentation

Return the timestamp in {MegaSec, Sec, MicroSec} format. This the old format returned by
erlang:now/0. Please note that the latter which is deprecated in Erlang/OTP is not implemented by
AtomVM.
See also: monotonic_time/1, system_time/1.
universaltime/0

returns: A tuple representing the current universal time.
Return the current time and day for UTC.
See also: localtime/0.
unlink/1

Pid: process to unlink from
returns: true
Unlink current process from a given process.
unregister/1

Name: name to unregister
returns: true
Lookup a process by name. Unlike Erlang/OTP, ports are not distinguished from processes. Errors
with badarg if the name is not registered.
whereis/1

Name: name of the process to locate
returns: undefined or the pid of the registered process
Lookup a process by name.
Module erts_debug

• Description
• Function Index
• Function Details

An implementation of a subset of the Erlang/OTP erts_debug interface.
Function Index

Function Details

flat_size/1

Term: term to get the size of
returns: A size
Return the size, in terms, of a given term.
Module gen_event

• Function Index
• Function Details

Function Index

Function Details

add_handler/3

add_handler(EventMgrRef, Handler, Args) -> any()

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 143

delete_handler/3

delete_handler(EventMgrRef, Handler, Args) -> any()

notify/2

notify(EventMgrRef, Event) -> any()

start/0

start() -> any()

start/2

start(EventMgrName, Options) -> any()

start_link/0

start_link() -> any()

start_link/2

start_link(EventMgrName, Options) -> any()

stop/1

stop(EventManagerRef) -> any()

sync_notify/2

sync_notify(EventMgrRef, Event) -> any()

Module gen_server

• Description
• Data Types
• Function Index
• Function Details

An implementation of the Erlang/OTP gen_server interface.
This module defines the gen_server behaviour. Required callback functions: init/1,
handle_call/3, handle_cast/2.
Description

This module implements a strict subset of the Erlang/OTP gen_server interface, supporting opera-
tions for local creation and management of gen_server instances.
This module is designed to be API-compatible with gen_server, with exceptions noted below.
Caveats:

• Support only for locally named procs
• No support for abcast
• No support for enter_loop
• No support for format_status
• No support for multi_call

Data Types
from()
options()
server_ref()

Function Index

AtomVM documentation, Release 0.6.6+git.db7fa169

144 Chapter 11. API Reference Documentation

Function Details

call/2

Equivalent to call(ServerRef, Request, 5000).
Send a request to a gen_server instance, and wait for a reply.
call/3

ServerRef: a reference to the gen_server acquired via startRequest: the request to send to
the gen_serverTimeoutMs: the amount of time in milliseconds to wait for a reply
returns: the reply sent back from the gen_server; {error, Reason}, otherwise.
Send a request to a gen_server instance, and wait for a reply.
This function will send the specified request to the specified gen_server instance, and wait at least
Timeout milliseconds for a reply from the gen_server.
cast/2

ServerRef: a reference to the gen_server acquired via startRequest: the request to send to
the gen_server
returns: ok | {error, Reason}
Send a request to a gen_server instance.
This function will send the specified request to the specified gen_server instance, but will not wait for
a reply.
init_it/4

init_it(Starter, Module, Args, Options) -> any()

init_it/5

init_it(Starter, Name, Module, Args, Options) -> any()

reply/2

From: the client to whom to send the replyReply: the reply to send to the client
returns: an arbitrary term, that should be ignored
Send a reply to a calling client.
This function will send the specified reply back to the specified gen_server client (e.g, via call/3).
The return value of this function can be safely ignored.
start/3

Module: the module in which the gen_server callbacks are definedArgs: the arguments to pass to
the module’s init callbackOptions: the options used to create the gen_server
returns: the gen_server pid, if successful; {error, Reason}, otherwise.
Start an un-named gen_server.
This function will start a gen_server instance.
Note. The Options argument is currently ignored.
start/4

ServerName: the name with which to register the gen_serverModule: the module in which
the gen_server callbacks are definedArgs: the arguments to pass to the module’s init
callbackOptions: the options used to create the gen_server
returns: the gen_server pid, if successful; {error, Reason}, otherwise.
Start a named gen_server.
This function will start a gen_server instance and register the newly created process with the process

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 145

registry. Subsequent calls may use the gen_server name, in lieu of the process id.
Note. The Options argument is currently ignored.
start_link/3

Module: the module in which the gen_server callbacks are definedArgs: the arguments to pass to
the module’s init callbackOptions: the options used to create the gen_server
returns: the gen_server pid, if successful; {error, Reason}, otherwise.
Start and link an un-named gen_server.
This function will start a gen_server instance.
Note. The Options argument is currently ignored.
start_link/4

ServerName: the name with which to register the gen_serverModule: the module in which
the gen_server callbacks are definedArgs: the arguments to pass to the module’s init
callbackOptions: the options used to create the gen_server
returns: the gen_server pid, if successful; {error, Reason}, otherwise.
Start and link a named gen_server.
This function will start a gen_server instance and register the newly created process with the process
registry. Subsequent calls may use the gen_server name, in lieu of the process id.
Note. The Options argument is currently ignored.
start_monitor/3

Module: the module in which the gen_server callbacks are definedArgs: the arguments to pass to
the module’s init callbackOptions: the options used to create the gen_server
returns: the gen_server pid and monitor reference tuple if successful; {error, Reason}, otherwise.
Start and monitor an un-named gen_server.
This function will start a gen_server instance.
Note. The Options argument is currently ignored.
start_monitor/4

ServerName: the name with which to register the gen_serverModule: the module in which
the gen_server callbacks are definedArgs: the arguments to pass to the module’s init
callbackOptions: the options used to create the gen_server
returns: the gen_server pid and monitor reference tuple if successful; {error, Reason}, otherwise.
Start and monitor a named gen_server.
This function will start a gen_server instance and register the newly created process with the process
registry. Subsequent calls may use the gen_server name, in lieu of the process id.
Note. The Options argument is currently ignored.
stop/1

Equivalent to stop(ServerRef, normal, infinity).
Stop a previously started gen_server instance.
stop/3

ServerRef: a reference to the gen_server acquired via startReason: reason to be supplied to callback
functionTimeout: ms to wait for successful stop
returns: ok, if the gen_server stopped; {error, Reason}, otherwise.
Stop a previously started gen_server instance.
This function will stop a gen_server instance, providing the supplied Reason to the gen_server’s

AtomVM documentation, Release 0.6.6+git.db7fa169

146 Chapter 11. API Reference Documentation

terminate/2 callback function. If the gen_server is named, then the gen_server name may be used to
stop the gen_server.
Module gen_statem

• Description
• Data Types
• Function Index
• Function Details

An implementation of the Erlang/OTP gen_statem interface.
This module defines the gen_statem behaviour. Required callback functions: init/1,
callback_mode/0.
Description

This module implements a strict subset of the Erlang/OTP gen_statem interface, supporting opera-
tions for local creation and management of gen_statem instances.
This module is designed to be API-compatible with gen_statem, with exceptions noted below.
Caveats:

• No support for start_link
• Support only for locally named gen_statem instances
• Support only for state function event handlers
• No support for keep_state or repeat_state return values from Module:StateName/3 callbacks
• No support for postpone or hibernate state transition actions
• No support for state enter calls
• No support for multi_call

Data Types
options()
server_ref()

Function Index

Function Details

call/2

Equivalent to call(ServerRef, Request, infinity).
Send a request to a gen_statem instance, and wait for a reply.
call/3

ServerRef: a reference to the gen_statem acquired via startRequest: the request to send to
the gen_statemTimeout: the amount of time in milliseconds to wait for a reply
returns: the reply sent back from the gen_statem; {error, Reason}, otherwise.
Send a request to a gen_statem instance, and wait for a reply..
This function will send the specified request to the specified gen_statem instance, and wait at least
Timeout milliseconds for a reply from the gen_statem.
cast/2

ServerRef: a reference to the gen_statem acquired via startRequest: the request to send to
the gen_statem
returns: ok | {error, Reason}

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 147

Send a request to a gen_statem instance.
This function will send the specified request to the specified gen_statem instance, but will not wait for
a reply.
reply/2

Client: the client to whom to send the replyReply: the reply to send to the client
returns: an arbitrary term, that should be ignored
Send a reply to a calling client.
This function will send the specified reply back to the specified gen_statem client (e.g, via call/3).
The return value of this function can be safely ignored.
start/3

Module: the module in which the gen_statem callbacks are definedArgs: the arguments to pass to
the module’s init callbackOptions: the options used to create the gen_statem
returns: the gen_statem pid, if successful; {error, Reason}, otherwise.
Start an un-named gen_statem.
This function will start a gen_statem instance.
Note. The Options argument is currently ignored.
start/4

ServerName: the name with which to register the gen_statemModule: the module in which
the gen_statem callbacks are definedArgs: the arguments to pass to the module’s init
callbackOptions: the options used to create the gen_statem
returns: the gen_statem pid, if successful; {error, Reason}, otherwise.
Start a named gen_statem.
This function will start a gen_statem instance and register the newly created process with the process
registry. Subsequent calls may use the gen_statem name, in lieu of the process id.
Note. The Options argument is currently ignored.
start_link/3

Module: the module in which the gen_statem callbacks are definedArgs: the arguments to pass to
the module’s init callbackOptions: the options used to create the gen_statem
returns: the gen_statem pid, if successful; {error, Reason}, otherwise.
Start an un-named gen_statem.
This function will start a gen_statem instance.
This version of the start function will link the started gen_statem process to the calling process.
Note. The Options argument is currently ignored.
start_link/4

ServerName: the name with which to register the gen_statemModule: the module in which
the gen_statem callbacks are definedArgs: the arguments to pass to the module’s init
callbackOptions: the options used to create the gen_statem
returns: the gen_statem pid, if successful; {error, Reason}, otherwise.
Start a named gen_statem.
This function will start a gen_statem instance and register the newly created process with the process
registry. Subsequent calls may use the gen_statem name, in lieu of the process id.
This version of the start function will link the started gen_statem process to the calling process.
Note. The Options argument is currently ignored.

AtomVM documentation, Release 0.6.6+git.db7fa169

148 Chapter 11. API Reference Documentation

stop/1

Equivalent to stop(ServerRef, normal, infinity).
Stop a previously started gen_statem.
stop/3

ServerRef: a reference to the gen_statem acquired via startReason: the reason to supply for
stoppingTimeout: maximum time to wait for shutdown
returns: ok, if the gen_statem stopped; {error, Reason}, otherwise.
Stop a previously started gen_statem instance.
This function will stop a gen_statem instance, providing the supplied Reason to the . If the gen_s-
tatem is a named gen_statem, then the gen_statem name may be used to stop the gen_statem.
Module gen_tcp

• Description
• Data Types
• Function Index
• Function Details

A partial implementation of the Erlang/OTP gen_tcp interface.
Description

This module provides an implementation of a subset of the functionality of the Erlang/OTP gen_tcp
interface. It is designed to be API-compatible with gen_tcp, with exceptions noted below.
This interface may be used to send and receive TCP packets, as either binaries or strings. Active and
passive modes are supported for receiving data.
Caveats:

• Limited support for socket tuning parameters
• No support for controlling_process/2

Note. Port drivers for this interface are not supportedon all AtomVM platforms.
Data Types
connect_option()
listen_option()
option()
packet()
reason()

Function Index

Function Details

accept/1

Socket: the listening socket.
returns: a connection-based (tcp) socket that can be used for reading and writing
Accept a connection on a listening socket.
accept/2

Socket: the listening socket.Timeout: amount of time in milliseconds to wait for a connection
returns: a connection-based (tcp) socket that can be used for reading and writing
Accept a connection on a listening socket.

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 149

close/1

Socket: the socket to close
returns: ok.
Close the socket.
connect/3

Address: the address to which to connectPort: the port to which to connectOptions: options for
controlling the behavior of the socket (see below)
returns: {ok, Socket} | {error, Reason}
Connect to a TCP endpoint on the specified address and port.
If successful, this function will return a Socket which can be used with the send/2 and recv/2 and
recv/3 functions in this module.
The following options are supported:

• active Active mode (default: true)
• buffer Size of the receive buffer to use in active mode (default: 512)
• binary data is received as binaries (as opposed to lists)
• list data is received as lists (default)

If the socket is connected in active mode, then the calling process will receive messages of the form
{tcp, Socket, Packet} when data is received on the socket. If active mode is set to false, then applica-
tions need to explicitly call one of the recv operations in order to receive data on the socket.
controlling_process/2

Socket: the socket to which to assign the pidPid: Pid to which to send messages
returns: ok | {error, Reason}.
Assign a controlling process to the socket. The controlling process will receive messages from
the socket.
This function will return {error, not_owner} if the calling process is not the current controlling
process.
By default, the controlling process is the process associated with the creation of the Socket.
listen/2

Port: the port number on which to listen. Specify 0 to use an OS-assigned port number, which can
then be retrieved via the inet:port/1 function.Options: A list of configuration parameters.
returns: a listening socket, which is appropriate for use in accept/1
Create a server-side listening socket.
This function is currently unimplemented
recv/2

Equivalent to recv(Socket, Length, infinity).
Receive a packet over a TCP socket from a source address/port.
recv/3

Socket: the socket over which to receive a packetLength: the maximum length to read of
the received packetTimeout: the amount of time to wait for a packet to arrive
returns: {ok, Packet} | {error, Reason}
Receive a packet over a TCP socket from a source address/port.
This function is used when the socket is not created in active mode. The received packet data returned

AtomVM documentation, Release 0.6.6+git.db7fa169

150 Chapter 11. API Reference Documentation

from this call, and should be of length no greater than the specified length. This function will return
{error, closed} if the server gracefully terminates the server side of the connection.
This call will block until data is received or a timeout occurs.
Note. Currently, the Timeout parameter isignored.
send/2

Socket: The Socket obtained via connect/3Packet: the data to send
returns: ok | {error, Reason}
Send data over the specified socket to a TCP endpoint.
If successful, this function will return the atom ok; otherwise, an error with a reason.
Module gen_udp

• Description
• Data Types
• Function Index
• Function Details

An implementation of the Erlang/OTP gen_udp interface.
Description

This module provides an implementation of a subset of the functionality of the Erlang/OTP gen_udp
interface. It is designed to be API-compatible with gen_udp, with exceptions noted below.
This interface may be used to send and receive UDP packets, as either binaries or strings. Active and
passive modes are supported for receiving data.
Caveats:

• Currently no support for IPv6
• Currently limited support for socket tuning parameters
• Currently no support for closing sockets

Note. Port drivers for this interface are not supportedon all AtomVM platforms.
Data Types
option()
packet()
reason()

Function Index

Function Details

close/1

Socket: the socket to close
returns: ok
Close the socket.
controlling_process/2

Socket: the socket to which to assign the pidPid: Pid to which to send messages
returns: ok | {error, Reason}.
Assign a controlling process to the socket. The controlling process will receive messages from
the socket.
This function will return {error, not_owner} if the calling process is not the current controlling

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 151

process.
By default, the controlling process is the process associated with the creation of the Socket.
open/1

Equivalent to open(PortNum, []).
Create a UDP socket. This function will instantiate a UDP socket that may be used to send or receive
UDP messages.
open/2

PortNum: the port number to bind to. Specify 0 to use an OS-assigned port number, which can then
be retrieved via the inet:port/1 function.Options: A list of configuration parameters.
returns: an opaque reference to the socket instance, used in subsequent commands.
throws bad_arg
Create a UDP socket. This function will instantiate a UDP socket that may be used to send or receive
UDP messages. This function will raise an exception with the bad_arg atom if there is no socket driver
supported for the target platform.
Note. The Params argument is currently ignored.
recv/2

Equivalent to recv(Socket, Length, infinity).
Receive a packet over a UDP socket from a source address/port.
recv/3

Socket: the socket over which to receive a packetLength: the maximum length to read of
the received packetTimeout: the amount of time to wait for a packet to arrive
returns: {ok, {Address, Port, Packet}} | {error, Reason}
Receive a packet over a UDP socket from a source address/port. The address and port of the received
packet, as well as the received packet data, are returned from this call. This call will block until data
is received or a timeout occurs.
Note. Currently Length and Timeout parameters areignored.
Note. Currently the length of the received packetis limited to 128 bytes.
send/4

Socket: the socket over which to send a packetAddress: the target address to which to send
the packetPortNum: the port on target address to which to send the packetPacket: the packet of data
to send
returns: ok | {error, Reason}
Send a packet over a UDP socket to a target address/port.
Note. Currently only ipv4 addresses are supported.
Module inet

• Data Types
• Function Index
• Function Details

Data Types
hostname()
ip4_address()
ip_address()
moniker()

AtomVM documentation, Release 0.6.6+git.db7fa169

152 Chapter 11. API Reference Documentation

port_number()
socket()
socket_impl()

Function Index

Function Details

close/1

Socket: the socket to close
returns: ok.
Close the socket.
peername/1

Socket: the socket
returns: The address and port of the remote end of an established connection.
The address and port representing the “remote” end of a connection. This function should be called
on a running socket instance.
port/1

Socket: the socket from which to obtain the port number
returns: the port number associated with the local socket
Retrieve the actual port number to which the socket is bound. This function is useful if the port
assignment is done by the operating system.
sockname/1

Socket: the socket
returns: The address and port of the local end of an established connection.
The address and port representing the “local” end of a connection. This function should be called on
a running socket instance.
Module io

• Description
• Function Index
• Function Details

An implementation of the Erlang/OTP io interface.
Description

This module implements a strict subset of the Erlang/OTP io interface.
Function Index

Function Details

format/1

Equivalent to format(Format, []).
format/2

Format: format stringArgs: format argument
returns: string
Format string and data to console. See io_lib:format/2 for information about formatting capabilities.

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 153

get_line/1

Prompt: prompt for user input
returns: string
Read string from console with prompt.
put_chars/1

Chars: character(s) to write to console
returns: ok
Writes the given character(s) to the console.
put_chars/2

Chars: character(s) to write to console
returns: ok
Writes the given character(s) to the console.
Module io_lib

• Description
• Function Index
• Function Details

An implementation of the Erlang/OTP io_lib interface.
Description

This module implements a strict subset of the Erlang/OTP io_lib interface.
Function Index

Function Details

format/2

Format: format stringArgs: format argument
returns: string
Format string and data to a string. Approximates features of OTP io_lib:format/2, but only supports
~p and ~n format specifiers. Raises badarg error if the number of format specifiers does not match
the length of the Args.
latin1_char_list/1

Term: term to test
returns: true if Term is a list of latin1 characters, false otherwise.
Determine if passed term is a list of ISO-8859-1 characters (0-255).
Module lists

• Description
• Function Index
• Function Details

An implementation of the Erlang/OTP lists interface.
Description

This module implements a strict subset of the Erlang/OTP lists interface.
Function Index

AtomVM documentation, Release 0.6.6+git.db7fa169

154 Chapter 11. API Reference Documentation

Function Details

all/2

Fun: the predicate to evaluateList: the list over which to evaluate elements
returns: true if Fun(E) evaluates to true, for all elements in List
Evaluates to true iff Fun(E) =:= true, for all E in List
any/2

Fun: the predicate to evaluateList: the list over which to evaluate elements
returns: true if Fun(E) evaluates to true, for at least one in List
Evaluates to true iff Fun(E) =:= true, for some E in List
delete/2

E: the member to deleteL: the list from which to delete the value
returns: the result of removing E from L, if it exists in L; otherwise, L.
Remove E from L
duplicate/2

Count: the number of times to duplicate the elementElem: the element to duplicate
returns: a list made of Elem duplicate Count times
Duplicate an element
filter/2

Pred: the predicate to apply to elements in ListList: list
returns: all values in L for which Pred is true.
Filter a list by a predicate, returning the list of elements for which the predicate is true.
filtermap/2

Fun: the filter/map funList1: the list where given fun will be applied
returns: Returns the result of application of given fun over given list items
Calls Fun(Elem) on successive elements Elem of List1 in order to update or remove elements from
List1.
Fun/1 must return either a Boolean or a tuple {true, Value}. The function returns the list of
elements for which Fun returns a new value, where a value of true is synonymous with {true,
Elem}.
Example: 1> lists:filtermap(fun(X) -> case X rem 2 of 0 -> {true, X div 2};
_ -> false end end, [1,2,3,4,5]). [1,2]
flatten/1

L: the list to flatten
returns: flattened list
recursively flattens elements of L into a single list
foldl/3

Fun: the function to applyAcc0: the initial accumulatorList: the list over which to fold
returns: the result of folding Fun over L
Fold over a list of terms, from left to right, applying Fun(E, Accum) to each successive element in List
foldr/3

Equivalent to foldl(Fun, Acc0, reverse(List)).

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 155

Fold over a list of terms, from right to left, applying Fun(E, Accum) to each successive element in List
foreach/2

Fun: the predicate to evaluateList: the list over which to evaluate elements
returns: ok
Applies given fun to each list element
join/2

Sep: the separatorList: list
returns: the result of inserting Sep between every element of List.
Inserts Sep between every element of List.
keydelete/3

K: the key to matchI: the position in the tuple to compare (1..tuple_size)L: the list from which to
delete the element
returns: the result of deleting any element in L who’s Ith element matches K
Delete the entry in L whose Ith element matches K.
keyfind/3

K: the key to matchI: the position in the tuple to compare (1..tuple_size)L: the list from which to find
the element
returns: the tuple in L who’s Ith element matches K; the atom false, otherwise
Find the entry in L whose Ith element matches K.
keymember/3

K: the key to matchI: the position in the tuple to compare (1..tuple_size)L: the list from which to find
the element
returns: true if there is a tuple in L who’s Ith element matches K; the atom false, otherwise
Returns true if a Ith element matches K.
keyreplace/4

NewTuple: tuple containing the new key to replace param K
returns: result of replacing the first element in L who’s Ith element matches K with the contents of
NewTuple.
Returns the result of replacing NewTuple for the first element in L with who’s Ith element matches K.
keystore/4

Key: the key to matchN: the position in the tuple to compare (1..tuple_size)TupleList: the list of
tuples from which to find the elementNewTuple: the tuple to add to the list
returns: An updated TupleList where the first occurrence of Key has been replaced with NewTuple.
Searches the list of tuples TupleList for a tuple whose Nth element compares equal to Key, replaces
it with NewTuple if found. If not found, append NewTuple to TupleList.
keytake/3

Key: the key to matchN: the position in the tuple to compare (1..tuple_size)TupleList1: the list of
tuples from which to find the element
returns: {value, Tuple, TupleList2} if such a tuple is found, otherwise false. TupleList2
is a copy of TupleList1 where the first occurrence of Tuple has been removed.
Searches the list of tuples TupleList1 for a tuple whose Nth element compares equal to Key.

AtomVM documentation, Release 0.6.6+git.db7fa169

156 Chapter 11. API Reference Documentation

last/1

L: the proper list from which to get the last item
returns: the last item of the list.
Get the last item of a list.
map/2

Fun: the function to applyList: the list over which to map
returns: the result of mapping over L
Map a list of terms, applying Fun(E)
mapfoldl/3

Fun: the function to apply
returns: the result of mapping and folding Fun over L
Combine map/2 and foldl/3 in one pass.
member/2

E: the member to search forL: the list from which to get the value
returns: true if E is a member of L; false, otherwise.
Determine whether a term is a member of a list.
nth/2

N: the index in the list to getL: the list from which to get the value
returns: the value in the list at position N.
Get the value in a list at position N.
Returns the value at the specified position in the list. The behavior of this function is undefined if N is
outside of the {1..length(L)}.
nthtail/2

N: the index to start the sublist fromL: the list from which to extract a tail
returns: a sublist of list starting from position N.
Get the sublist of list L starting after the element N.
The behavior of this function is undefined if N is outside of the {0..length(L)}.
reverse/1

L: the list to reverse
returns: the elements of L in reverse order
Equivalent to lists:reverse(L, []).
Erlang/OTP implementation of this function actually handles few simple cases and calls
lists:reverse/2 for the more generic case. Consequently, calling lists:reverse/1 without
a list or with an improper list of two elements will fail with a function clause exception on Erlang
/OTP and with a badarg exception with this implementation.
reverse/2

L: the list to reverseT: the tail to append to the reversed list
L: the list to reverseT: the tail to append to the reversed list
L: the list to reverseT: the tail to append to the reversed list
returns: the elements of L in reverse order followed by T
Reverse the elements of L, followed by T. If T is not a list or not a proper list, it is appended anyway

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 157

and the result will be an improper list.
If L is not a proper list, the function fails with badarg.
Following Erlang/OTP tradition, lists:reverse/1,2 is a nif. It computes the length and then allo-
cates memory for the list at once (2 * n terms).
While this is much faster with AtomVM as allocations are expensive with default heap growth strat-
egy, it can consume more memory until the list passed is garbage collected, as opposed to a recursive
implementation where the process garbage collect part of the input list during the reversal.
Consequently, tail-recursive implementations calling lists:reverse/2 can be as expensive or more
expensive in memory than list comprehensions or non-tail recursive versions depending on
the number of terms saved on the stack between calls.
For example, a non-tail recursive join/2 implementation requires two terms on stack for each itera-
tion, so when it returns it will use n * 3 (stack) + n * 4 (result list) a tail recursive version will use,
on last iteration: n * 4 (reversed list) + n * 4’ (result list)
search/2

Pred: the predicate to apply to elements in ListList: search
returns: the first {value, Val}, if Pred(Val); false, otherwise.
If there is a Value in List such that Pred(Value) returns true, returns {value, Value} for the first such
Value, otherwise returns false.
seq/2

From: from integerTo: to Integer
returns: list of integers from [From..To]
Returns a sequence of integers in a specified range.
This function is equivalent to lists:seq(From, To, 1).
seq/3

From: from integerTo: to IntegerIncr: increment value
returns: list of integers [From, From+Incr, ..., N], where N is the largest integer <= To incre-
mented by Incr
Returns a sequence of integers in a specified range incremented by a specified value.
sort/1

List: a list
returns: Sorted list, ordered by <
Returns a sorted list, using < operator to determine sort order.
sort/2

Fun: sort functionList: a list
returns: Sorted list, ordered by Fun(A, B) : boolean() such that A “less than” B.
Returns a sorted list, using Fun(A, B) to determine sort order.
split/2

N: elements non negative IntegerList1: list to split
returns: Tuple with the two lists
Splits List1 into List2 and List3. List2 contains the first N elements and List3 the remaining elements
(the Nth tail).
sublist/2

List: list to take the sublist fromLen: the number of elements to get from List

AtomVM documentation, Release 0.6.6+git.db7fa169

158 Chapter 11. API Reference Documentation

returns: a list made of the first Len elements of List
Return a sublist made of the first Len elements of List. It is not an error for Len to be larger than
the length of List.
usort/1

List: a list
returns: Sorted list with duplicates removed, ordered by <
Returns a unique, sorted list, using < operator to determine sort order.
See also: sort/1.
usort/2

Fun: sort functionList: a list
returns: Sorted list with duplicates removed, ordered by Fun.
Returns a unique, sorted list.
See also: sort/2.
Module logger

• Description
• Data Types
• Function Index
• Function Details

A naive implementation of the Erlang/OTP logger interface.
Description

This module implements a strict subset of the Erlang/OTP logger interface, supporting operations for
logging messages to various log handlers. A default handler (logger_std_h) supports logging to
the console.
This module is designed to be API-compatible with the Erlang/OTP logger API, with exceptions
noted below. Users can use macros defined in the Erlang/OTP logger.hrl header for logging
messages.
Limitations include but are not limited to:

• No support for logging filters
• No support for logging formatters
• No API support for logger configuration; all configuration must be done at initialization of

the logger_manager
• No support for throttling or compacting sequences of repeated log messages

Data Types
level()
string_or_report()

Function Index

Function Details

alert/1

StringOrReport: string or report
returns: ok
Log a string at alert log level.

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 159

alert/2

FormatOrReport: format string or reportArgsOrMeta: format string arguments or metadata
returns: ok
Log a format string with args at alert log level.
alert/3

Format: format stringArgs: format string argumentsMetaData: log metadata
returns: ok
Log a format string with args at alert log level with the specified metadata.
allow/2

Level: the log levelModule: the module
returns: true if logging should be permitted at the specified level for the specified module; false,
otherwise.
Determine whether logging should be permitted at the specified level for the specified module
compare/2

Level1: a levelLevel2: a level
returns: lt | eq | gt
Return comparison between levels
lt if Level1 < Level2 eq if Level1 == Level2 gt if Level1 > Level2
critical/1

StringOrReport: string or report
returns: ok
Log a string at critical log level.
critical/2

FormatOrReport: format string or reportArgsOrMeta: format string arguments or metadata
returns: ok
Log a format string with args at critical log level.
critical/3

Format: format stringArgs: format string argumentsMetaData: log metadata
returns: ok
Log a format string with args at critical log level with the specified metadata.
debug/1

StringOrReport: string or report
returns: ok
Log a string at debug log level.
debug/2

FormatOrReport: format string or reportArgsOrMeta: format string arguments or metadata
returns: ok
Log a format string with args at debug log level.
debug/3

Format: format stringArgs: format string argumentsMetaData: log metadata

AtomVM documentation, Release 0.6.6+git.db7fa169

160 Chapter 11. API Reference Documentation

returns: ok
Log a format string with args at debug log level with the specified metadata.
emergency/1

StringOrReport: string or report
returns: ok
Log a string at emergency log level.
emergency/2

FormatOrReport: format string or reportArgsOrMeta: format string arguments or metadata
returns: ok
Log a format string with args at emergency log level.
emergency/3

Format: format stringArgs: format string argumentsMetaData: log metadata
returns: ok
Log a format string with args at emergency log level with the specified metadata.
error/1

StringOrReport: string or report
returns: ok
Log a string at error log level.
error/2

FormatOrReport: format string or reportArgsOrMeta: format string arguments or metadata
returns: ok
Log a format string with args at error log level.
error/3

Format: format stringArgs: format string argumentsMetaData: log metadata
returns: ok
Log a format string with args at error log level with the specified metadata.
info/1

StringOrReport: string or report
returns: ok
Log a string at info log level.
info/2

FormatOrReport: format string or reportArgsOrMeta: format string arguments or metadata
returns: ok
Log a format string with args at info log level.
info/3

Format: format stringArgs: format string argumentsMetaData: log metadata
returns: ok
Log a format string with args at info log level with the specified metadata.

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 161

log/2

Level: log levelStringOrReport: string or report map
returns: ok
Log a string at the specified log level.
log/3

Level: log levelFormatOrReport: format string or reportArgsOrMeta: format string arguments or
metadata
returns: ok
Log a format string with args at the specified log level.
log/4

Level: log levelFormat: format stringArgs: format string argumentsMeta: log metadata
returns: ok
Log a format string with args at the specified log level with the specified metadata.
notice/1

StringOrReport: string or report
returns: ok
Log a string at notice log level.
notice/2

FormatOrReport: format string or reportArgsOrMeta: format string arguments or metadata
returns: ok
Log a format string with args at notice log level.
notice/3

Format: format stringArgs: format string argumentsMetaData: log metadata
returns: ok
Log a format string with args at notice log level with the specified metadata.
warning/1

StringOrReport: string or report
returns: ok
Log a string at warning log level.
warning/2

FormatOrReport: format string or reportArgsOrMeta: format string arguments or metadata
returns: ok
Log a format string with args at warning log level.
warning/3

Format: format stringArgs: format string argumentsMetaData: log metadata
returns: ok
Log a format string with args at warning log level with the specified metadata.
Module maps

• Description
• Data Types

AtomVM documentation, Release 0.6.6+git.db7fa169

162 Chapter 11. API Reference Documentation

• Function Index
• Function Details

A naive implementation of the Erlang/OTP maps interface.
Description

The maps module provides several convenience operations for interfacing with the Erlang map type,
which associates (unique) keys with values.
Note that the ordering of entries in a map is implementation-defined. While many operations in this
module present entries in lexical order, users should in general make no assumptions about
the ordering of entries in a map.
This module implements a subset of the Erlang/OTP maps interface. Some OTP functions are not
implemented, and the approach favors correctness and readability over speed and performance.
Data Types
iterator()
iterator()

abstract datatype: iterator(Key, Value)
iterator_order()
iterator_order()
map_or_iterator()

Function Index

Function Details

filter/2

Pred: a function used to filter entries from the mapMapOrIterator: the map or map iterator to filter
returns: a map containing all elements in MapOrIterator that satisfy Pred
Return a map who’s entries are filtered by the supplied predicate.
This function returns a new map containing all elements from the input MapOrIterator that satisfy
the input Pred.
The supplied predicate is a function from key-value inputs to a boolean value.
This function raises a {badmap, Map} error if Map is not a map or map iterator, and a badarg error
if the input predicate is not a function.
find/2

Key: the key to findMap: the map in which to search
returns: {ok, Value} if Key is in Map; error, otherwise.
Returns {ok, Value} if Key is in Map; error, otherwise.
This function raises a {badmap, Map} error if Map is not a map.
fold/3

Fun: function over which to fold valuesMapOrIterator: the map or map iterator over which to fold
returns: the result of folding over all elements of the supplied map.
Fold over the entries in a map.
This function takes a function used to fold over all entries in a map and an initial accumulator value to
use as the value supplied to the first entry in the map.
This function raises a badmap error if Map is not a map or map iterator, and a badarg error if
the input function is not a function.

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 163

foreach/2

Fun: function to call with every key-value pairMapOrIterator: the map or map iterator over which
to iterate
returns: ok
Iterate over the entries in a map.
This function takes a function used to iterate over all entries in a map.
This function raises a badmap error if Map is not a map or map iterator, and a badarg error if
the input function is not a function.
from_keys/2

List: the list of keys of the map that will be createdValue: the value that will be used as value for all
map items
returns: a map having all provided keys having provided value as value
Creates a map with specified keys intialized to given value
from_list/1

List: a list of [{Key, Value}] pairs
returns: the map containing the entries from the list of supplied key-value pairs.
This function constructs a map from the supplied list of key-value pairs.
If the input list contains duplicate keys, the returned map will contain the right-most entry.
This function will raise a badarg error if the input is not a proper list or contains an element that is
not a key-value pair.
get/2

Key: the key to getMap: the map from which to get the value
returns: the value in Map associated with Key, if it exists.
Get the value in Map associated with Key, if it exists.
This function raises a {badkey, Key} error if ‘Key’ does not occur in Map or a {badmap, Map}
error if Map is not a map.
get/3

Key: the keyMap: the mapDefault: default value
returns: the value in Map associated with Key, or Default, if the key is not associated with a value in
Map.
Get the value in Map associated with Key, or Default, if the key is not associated with a value in
Map.
This function raises a {badmap, Map} error if Map is not a map.
is_key/2

Key: the keyMap: the map
returns: true if Key is associated with a value in Map; false, otherwise.
Return true if Key is associated with a value in Map; false, otherwise.
This function raises a {badmap, Map} error if Map is not a map.
iterator/1

Equivalent to iterator(Map, undefined).
iterator/2

Map: the mapOrder: the iterator order, or undefined for default (unspecified) order.

AtomVM documentation, Release 0.6.6+git.db7fa169

164 Chapter 11. API Reference Documentation

returns: an iterator structure that can be used to iterate over associations in a map.
Return an iterator structure that can be used to iterate over associations in a map.
This function raises a {badmap, Map} error if Map is not a map.
See also: next/1.
keys/1

Map: the map
returns: the list of keys that occur in this map.
Returns the list of keys that occur in this map.
No guarantees are provided about the order of keys returned from this function.
This function raises a {badmap, Map} error if Map is not a map.
map/2

Fun: the function to apply to every entry in the mapMap: the map to which to apply the map function
returns: the result of applying Fun to every entry in Map
Returns the result of applying a function to every element of a map.
This function raises a badmap error if Map is not a map or map iterator, and a badarg error if
the input function is not a function.
merge/2

Map1: a mapMap2: a map
returns: the result of merging entries from Map1 and Map2.
Merge two maps to yield a new map.
If Map1 and Map2 contain the same key, then the value from Map2 will be used.
This function raises a badmap error if neither Map1 nor Map2 is a map.
merge_with/3

Combiner: a function to merge values from Map1 and Map2 if a key exists in both mapsMap1:
a mapMap2: a map
returns: the result of merging entries from Map1 and Map2.
Merge two maps to yield a new map.
If Map1 and Map2 contain the same key, then the value from Combiner(Key, Value1, Value2)
will be used.
This function raises a badmap error if neither Map1 nor Map2 is a map.
new/0

returns: a new map
Return a new (empty) map.
next/1

Iterator: a map iterator
returns: the key and value, along with the next iterator in the map, or the atom none if there are no
more items over which to iterate.
Returns the next key and value in the map, along with a new iterator that can be used to iterate over
the remainder of the map.
This function raises a badarg error if the supplied iterator is not of the expected type. Only use itera-
tors that are returned from functions in this module.

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 165

put/3

Key: the keyValue: the valueMap: the map
returns: A copy of Map containing the {Key, Value} association.
Return the map containing the {Key, Value} association.
If Key occurs in Map then it will be over-written. Otherwise, the returned map will contain the new
association.
This function raises a {badmap, Map} error if Map is not a map.
remove/2

Key: the key to removeMapOrIterator: the map or map iterator from which to remove the key
returns: a new map without Key as an entry.
Remove an entry from a map using a key.
If Key does not occur in Map, then the returned Map has the same entries as the input map or map
iterator.
Note. This function extends the functionality of the OTP remove/2 function, since the OTP interface
only takes a map as input.
This function raises a badmap error if Map is not a map or map iterator.
size/1

Map: the map
returns: the size of the map
Returns the size of (i.e., the number of entries in) the map
This function raises a {badmap, Map} error if Map is not a map.
to_list/1

returns: a list of [{Key, Value}] tuples
Return the list of entries, expressed as {Key, Value} pairs, in the supplied map.
If provided with a map, no guarantees are provided about the order of entries returned from this
function. Order can be controlled with iterator/2
This function raises a {badmap, Map} error if Map is not a map and not an iterator.
update/3

Key: the key to updateValue: the value to updateMap: the map to update
returns: a new map, with Key updated with Value
Returns a new map with an updated key-value association.
This function raises a badmap error if Map is not a map and {badkey, Key} if key doesn`t exist
values/1

Map: the map
returns: the list of values that occur in this map.
Returns the list of values that occur in this map.
No guarantees are provided about the order of values returned from this function.
This function raises a {badmap, Map} error if Map is not a map.
Module math

• Function Index
• Function Details

AtomVM documentation, Release 0.6.6+git.db7fa169

166 Chapter 11. API Reference Documentation

Function Index

Function Details

acos/1

acosh/1

asin/1

asinh/1

atan/1

atan2/2

atanh/1

ceil/1

cos/1

cosh/1

exp/1

floor/1

fmod/2

log/1

log10/1

log2/1

pi/0

pow/2

sin/1

sinh/1

sqrt/1

tan/1

tanh/1

Module net

• Data Types
• Function Index
• Function Details

Data Types
addrinfo()
service()

Function Index

Function Details

getaddrinfo/1

Host: the host string for which to find address information
returns: Address info for the specified host

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 167

Equivalent to getaddrinfo(Host, undefined).
Retrieve address information for a given hostname.
getaddrinfo/2

Host: the host string for which to find address informationService: the service string for which to
find address information
returns: Address info for the specified host and service
Retrieve address information for a given hostname and service.
The Host parameter may be a fully qualified host name or a string containing a valid dotted pair IP
address. (Currently, only IPv4 is supported).
The Service parameter may be the name of a service (as defined via services(3) or a string
containing a decimal value of the same.
Note that the Host or String parameter may be undefined, but not both.
Module proplists

• Description
• Data Types
• Function Index
• Function Details

An implementation of the Erlang/OTP proplists interface.
Description

This module implements a strict subset of the Erlang/OTP proplists interface.
Data Types
property()
proplist()

Function Index

Function Details

compact/1

ListIn: the list will be compacted, such as [{key, true}]
returns: the compacted list, such as [key]
Minimizes the representation of all entries in the list. This is equivalent to [property(P) || P <-
ListIn]. See also property/1, unfold/1.
delete/2

Key: the item key that will be deletedList: the property list from which items will be deleted
returns: A list without items having key Key
Deletes all entries associated with Key from List.
from_map/1

Map: the map that will be converted, such as #{key => true}
returns: the map converted to list, such as [{key, true}]
Converts the map Map to a property list.
get_all_values/2

Key: the key with which to find the valuesList: the property list from which to get the value
returns: a list of values for all entries having Key as key

AtomVM documentation, Release 0.6.6+git.db7fa169

168 Chapter 11. API Reference Documentation

Similar to get_value/2, but returns the list of values for all entries {Key, Value} in List. If no
such entry exists, the result is the empty list.
get_bool/2

Key: the key that will be searchedList: the list where key is searched
returns: true when exists an option with given key that is true, otherwise false
Returns the value of a boolean key/value option. If lookup(Key, List) would yield {Key,
true}, this function returns true, otherwise false. See also get_value/2, lookup/2.
get_value/2

Equivalent to get_value(Key, List, undefined).
Get a value from a property list.
get_value/3

Key: the key with which to find the valueList: the property list from which to get
the valueDefault: the default value to return, if Key is not in the property list.
returns: the value in the property list under the key, or Default, if Key is not in List.
Get a value from a property list.
Returns the value under the specified key, or the specified Default, if the Key is not in the supplied
List. If the Key corresponds to an entry in the property list that is just a single atom, this function
returns the atom true.
is_defined/2

Key: the key that will be searchedList: the list where key is searched
returns: true if Key is defined, otherwise false
Returns true if List contains at least one entry associated with Key, otherwise false.
lookup/2

Key: the key with which to find the entryList: the property list from which to get the entry
returns: Either the found entry (always as a tuple) or none
Returns the first entry associated with Key in List, if one exists, otherwise returns none. For an atom
A in the list, the tuple {A, true} is the entry associated with A. See also get_bool/2, get_value
/2, lookup_all/2.
lookup_all/2

Key: the key with which to find the entriesList: the property list from which to get the entries
returns: all entries having Key as key
Returns the list of all entries associated with Key in List. If no such entry exists, the result is
the empty list. See also lookup/2.
property/1

PropertyIn: a property
returns: the same property in normal form
Creates a normal form (minimal) representation of a property. If PropertyIn is {Key, true},
where Key is an atom, Key is returned, otherwise the whole term PropertyIn is returned. See also
property/2.
property/2

Key: the property keyValue: the property value
returns: Creates a property in normal form
Creates a normal form (minimal) representation of a simple key/value property. Returns Key if

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 169

Value is true and Key is an atom, otherwise a tuple {Key, Value} is returned. See also
property/1.
to_map/1

List: the list will be converted to a map, such as [key, {one, 1}]
returns: the list converted as a map, such as #{key => true, one => 1}
Converts the property list List to a map
Shorthand atom values in List will be expanded to an association of the form Atom => true.
Tuples of the form {Key, Value} in List will be converted to an association of the form Key =>
Value. Anything else will be silently ignored.
If the same key appears in List multiple times, the value of the one appearing nearest to the head of
List will be in the result map, that is the value that would be returned by a call to get_value(Key,
List).
unfold/1

ListIn: the list that will be unfolded, such as [key]
returns: the unfolded list, such as {key, true}
Unfolds all occurrences of atoms in ListIn to tuples {Atom, true}.
Module queue

• Data Types
• Function Index
• Function Details

Data Types
queue()
queue()

abstract datatype: queue(Item)
Function Index

Function Details

all/2

Pred: the predicate function to apply to each itemQ: the queue to check against the predicate
returns: Returns true if Pred(Item) returns true for all items Item in Q, otherwise false.
Returns true if Pred(Item) returns true for all items Item in Q, otherwise false.
Example: 1> Queue = queue:from_list([1,2,3,4,5]). 2> queue:all(fun (E) -> E >
3 end, Queue). false 3> queue:all(fun (E) -> E > 0 end, Queue). true
any/2

Pred: the predicate function to apply to each itemQ: the queue to check against the predicate
returns: Returns true if Pred(Item) returns true for at least one item Item in Q, otherwise false.
Returns true if Pred(Item) returns true for at least one item Item in Q, otherwise false.
Example: 1> Queue = queue:from_list([1,2,3,4,5]). 2> queue:any(fun (E) -> E >
10 end, Queue). false 3> queue:any(fun (E) -> E > 3 end, Queue). true
delete/2

Item: the item to delete from the queueQ1: the queue from which the item will be deleted
returns: Returns a copy of Q1 where the first item matching Item is deleted, if there is such an item.
Returns a copy of Q1 where the first item matching Item is deleted, if there is such an item.

AtomVM documentation, Release 0.6.6+git.db7fa169

170 Chapter 11. API Reference Documentation

Example: 1> Queue = queue:from_list([1,2,3,4,5]). 2> Queue1 = queue:delete(3,
Queue). 3> queue:member(3, Queue1). false
delete_r/2

Item: the item to delete from the queueQ1: the queue from which the item will be deleted
returns: Returns a copy of Q1 where the last item matching Item is deleted, if there is such an item.
Returns a copy of Q1 where the last item matching Item is deleted, if there is such an item.
Example: 1> Queue = queue:from_list([1,2,3,4,3,5]). 2> Queue1 =
queue:delete_r(3, Queue). 3> queue:to_list(Queue1). [1,2,3,4,5]
delete_with/2

Pred: the predicate function to apply to each itemQ1: the queue from which the item will be deleted
returns: Returns a copy of Q1 where the first item for which Pred returns true is deleted, if there is
such an item.
Returns a copy of Q1 where the first item for which Pred returns true is deleted, if there is such
an item.
Example: 1> Queue = queue:from_list([100,1,2,3,4,5]). 2> Queue1 =
queue:delete_with(fun (E) -> E > 0, Queue). 3> queue:to_list(Queue1).
[1,2,3,4,5]

delete_with_r/2

Pred: the predicate function to apply to each itemQ1: the queue from which the item will be deleted
returns: Returns a copy of Q1 where the last item for which Pred returns true is deleted, if there is
such an item.
Returns a copy of Q1 where the last item for which Pred returns true is deleted, if there is such
an item.
Example: 1> Queue = queue:from_list([1,2,3,4,5,100]). 2> Queue1 =
queue:delete_with_r(fun (E) -> E > 10, Queue). 3> queue:to_list(Queue1).
[1,2,3,4,5]

drop/1

Q1: the queue from which the first element will be removed
returns: Returns a queue Q2 that is the result of removing the front item from Q1. Fails with reason
empty if Q1 is empty
Returns a queue Q2 that is the result of removing the front item from Q1. Fails with reason empty if
Q1 is empty.
Example: 1> Queue = queue:from_list([1,2,3,4,5]). {[5,4,3],[1,2]} 2> Queue =
queue:drop(Queue). {[5,4,3],[2]} 3> queue:to_list(Queue1). [2,3,4,5]
drop_r/1

Q1: the queue from which the last element will be removed
returns: Returns a queue Q2 that is the result of removing the rear item from Q1. Fails with reason
empty if Q1 is empty
Returns a queue Q2 that is the result of removing the rear item from Q1. Fails with reason empty if Q1
is empty.
Example: 1> Queue = queue:from_list([1,2,3,4,5]). {[5,4,3],[1,2]} 2> Queue =
queue:drop_r(Queue). {[4,3],[1,2]} 3> queue:to_list(Queue1). [1,2,3,4]
filter/2

Fun: the function to be applied to each item in the queueQ1: the queue where the function will be
applied

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 171

returns: Returns a queue Q2 that is the result of calling Fun(Item) on all items in Q1
Returns a queue Q2 that is the result of calling Fun(Item) on all items in Q1. If Fun(Item) returns
true, Item is copied to the result queue. If it returns false, Item is not copied. If it returns a list,
the list elements are inserted instead of Item in the result queue.
Example 1: 1> Queue = queue:from_list([1,2,3,4,5]). {[5,4,3],[1,2]} 2> Queue1
= queue:filter(fun (E) -> E > 2 end, Queue). {[5],[3,4]} 3>
queue:to_list(Queue1). [3,4,5]
Example 2: 1> Queue = queue:from_list([1,2,3,4,5]). {[5,4,3],[1,2]} 2> Queue1
= queue:filter(fun (E) -> [E, E+1] end, Queue). {[6,5,5,4,4,3],[1,2,2,3]} 3>
queue:to_list(Queue1). [1,2,2,3,3,4,4,5,5,6]
filtermap/2

Fun: the function to be applied to each item in the queueQ1: the queue where the function will be
applied
returns: Returns a queue Q2 that is the result of calling Fun(Item) on all items in Q1
Returns a queue Q2 that is the result of calling Fun(Item) on all items in Q1. If Fun(Item) returns
true, Item is copied to the result queue. If it returns false, Item is not copied. If it returns {true,
NewItem}, the queue element at this position is replaced with NewItem in the result queue.
Example 1: 1> Queue = queue:from_list([1,2,3,4,5]). {[5,4,3],[1,2]} 2> Queue1
= queue:filtermap(fun (E) -> E > 2 end, Queue). {[5],[3,4]} 3>
queue:to_list(Queue1). [3,4,5] 4> Queue1 = queue:filtermap(fun (E) -> {true,
E+100} end, Queue). {[105,104,103],[101,102]} 5> queue:to_list(Queue1).
[101,102,103,104,105]

fold/3

Fun: the function to be applied to each item and accumulatorAcc0: the initial accumulator valueQ:
the queue over which the function will be folded
returns: Returns the final value of the accumulator after folding over the queue
Calls Fun(Item, AccIn) on successive items Item of Queue, starting with AccIn == Acc0.
The queue is traversed in queue order, that is, from front to rear. Fun/2 must return a new accumula-
tor, which is passed to the next call. The function returns the final value of the accumulator. Acc0 is
returned if the queue is empty.
Example: 1> queue:fold(fun(X, Sum) -> X + Sum end, 0,
queue:from_list([1,2,3,4,5])). 15 2> queue:fold(fun(X, Prod) -> X * Prod
end, 1, queue:from_list([1,2,3,4,5])). 120
from_list/1

L: the list to be converted to a queue
returns: Returns a queue containing the items in L in the same order
Returns a queue containing the items in L in the same order; the head item of the list becomes
the front item of the queue. This function is part of the Original API.
get/1

Q: the queue from which the first element will be returned
returns: Returns Item at the front of queue Q. Fails with reason empty if Q is empty
Returns Item at the front of queue Q. Fails with reason empty if Q is empty.
Example: 1> Queue = queue:from_list([1,2,3,4,5]). {[5,4,3],[1,2]} 2> 1 ==
queue:get(Queue). true
get_r/1

Q: the queue from which the last element will be returned

AtomVM documentation, Release 0.6.6+git.db7fa169

172 Chapter 11. API Reference Documentation

returns: Returns Item at the rear of queue Q. Fails with reason empty if Q is empty
Returns Item at the rear of queue Q. Fails with reason empty if Q is empty.
Example: 1> Queue = queue:from_list([1,2,3,4,5]). {[5,4,3],[1,2]} 2> 5 ==
queue:get_r(Queue). true
in/2

Item: the item that will be enqueued (inserted at the rear of the queue)Q1: the queue where the item
will be inserted in
returns: Returns the queue with Item inserted at the rear of the queue
Inserts Item at the rear of queue Q1. Returns the resulting queue Q2. This function is part of the Orig-
inal API
Example: 1> Queue = queue:from_list([1,2,3,4,5]). {[5,4,3],[1,2]} 2> Queue1 =
queue:in(100, Queue). {[100,5,4,3],[1,2]} 3> queue:to_list(Queue1).
[1,2,3,4,5,100]

in_r/2

Item: the item that will be enqueued (inserted at the front of the queue)Q1: the queue where the item
will be inserted in
returns: Returns the queue with Item inserted at the front of the queue
Inserts Item at the front of queue Q1. Returns the resulting queue Q2. This function is part of
the Original API
Example: 1> Queue = queue:from_list([1,2,3,4,5]). {[5,4,3],[1,2]} 2> Queue1 =
queue:in_r(100, Queue). {[5,4,3],[100,1,2]} 3> queue:to_list(Queue1).
[100,1,2,3,4,5]

is_empty/1

Q: the queue to be tested
returns: Returns true if Q is empty, otherwise false
Tests if Q is empty and returns true if so, otherwise false. This function is part of the Original API.
is_queue/1

Term: the term to be tested
returns: Returns true if Term is a queue, otherwise false
Tests if Term is a queue and returns true if so, otherwise false. Note that the test will return true
for a term coinciding with the representation of a queue, even when not constructed by this module.
This function is part of the Original API.
join/2

Q1: the first queue to be joinedQ2: the second queue to be joined
returns: Returns a queue Q3 that is the result of joining Q1 and Q2 with Q1 in front of Q2
Returns a queue Q3 that is the result of joining Q1 and Q2 with Q1 in front of Q2. This function is part
of the Original API
Example: 1> Queue1 = queue:from_list([1,3]). {[3],[1]} 2> Queue2 =
queue:from_list([2,4]). {[4],[2]} 3> queue:to_list(queue:join(Queue1,
Queue2)). [1,3,2,4]
len/1

Q: the queue whose length is to be calculated
returns: Returns the length of queue Q
Calculates and returns the length of queue Q. This function is part of the Original API.

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 173

member/2

Item: the item to be searched in the queueQ: the queue to be searched
returns: Returns true if Item matches some element in Q, otherwise false
Returns true if Item matches some element in Q, otherwise false. This function is part of the Orig-
inal API.
new/0

returns: Returns an empty queue.
This function returns an empty queue. This function is part of the Original API.
out/1

Q1: the queue from which the item will be dequeued (removed from the front)
returns: Returns a tuple {{value, Item}, Q2} where Item is the item removed and Q2 is
the resulting queue. If Q1 is empty, tuple {empty, Q1} is returned
Removes the item at the front of queue Q1. Returns tuple {{value, Item}, Q2}, where Item is
the item removed and Q2 is the resulting queue. If Q1 is empty, tuple {empty, Q1} is returned. This
function is part of the Original API
Example: 1> Queue = queue:from_list([1,2,3,4,5]). {[5,4,3],[1,2]} 2> {{value,
1=Item}, Queue1} = queue:out(Queue). {{value,1},{[5,4,3],[2]}} 3>
queue:to_list(Queue1). [2,3,4,5]
out_r/1

Q1: the queue from which the item will be dequeued (removed from the rear)
returns: Returns a tuple {{value, Item}, Q2} where Item is the item removed and Q2 is
the resulting queue. If Q1 is empty, tuple {empty, Q1} is returned
Removes the item at the rear of queue Q1. Returns tuple {{value, Item}, Q2}, where Item is
the item removed and Q2 is the new queue. If Q1 is empty, tuple {empty, Q1} is returned. This
function is part of the Original API
Example: 1> Queue = queue:from_list([1,2,3,4,5]). {[5,4,3],[1,2]} 2> {{value,
5=Item}, Queue1} = queue:out_r(Queue). {{value,5},{[4,3],[1,2]}} 3>
queue:to_list(Queue1). [1,2,3,4]
peek/1

Q: the queue from which the first element will be returned
returns: Returns tuple {value, Item}, where Item is the front item of Q, or empty if Q is empty
Returns tuple {value, Item}, where Item is the front item of Q, or empty if Q is empty.
Example: 1> queue:peek(queue:new()). empty 2> Queue =
queue:from_list([1,2,3,4,5]). {[5,4,3],[1,2]} 3> queue:peek(Queue). {value,
1}

peek_r/1

Q: the queue from which the last element will be returned
returns: Returns tuple {value, Item}, where Item is the rear item of Q, or empty if Q is empty
Returns tuple {value, Item}, where Item is the rear item of Q, or empty if Q is empty.
Example: 1> queue:peek_r(queue:new()). empty 2> Queue =
queue:from_list([1,2,3,4,5]). {[5,4,3],[1,2]} 3> queue:peek_r(Queue).
{value, 5}

reverse/1

Q1: the queue to be reversed

AtomVM documentation, Release 0.6.6+git.db7fa169

174 Chapter 11. API Reference Documentation

returns: Returns a queue Q2 containing the items of Q1 in reverse order
Returns a queue Q2 containing the items of Q1 in reverse order. This function is part of the Original
API
Example: 1> Queue = queue:from_list([1,2,3,4,5]). {[5,4,3],[1,2]} 2> Queue1 =
queue:reverse(Queue). {[2,1],[3,4,5]}
split/2

N: the number of items to be put in the first resulting queue Q2Q1: the queue to be split
returns: Returns a tuple {Q2, Q3} where Q2 contains the first N items of Q1 and Q3 contains
the remaining items
Splits Q1 in two. The N front items are put in Q2 and the rest in Q3. This function is part of the Orig-
inal API
to_list/1

Q: the queue to be converted to a list
returns: Returns a list of the items in the queue
Returns a list of the items in the queue in the same order; the front item of the queue becomes
the head of the list.
Example: 1> Queue = queue:from_list([1,2,3,4,5]). {[5,4,3],[1,2]} 2> List ==
queue:to_list(Queue). true This function is part of the Original API.
Module sets

• Data Types
• Function Index
• Function Details

Data Types
set()

abstract datatype: set(Element)
set()

Function Index

Function Details

add_element/2

Element: the element to addSet1: the set to add the element to
returns: Returns a new set formed from Set1 with Element inserted.
Return Set1 with Element inserted in it.
del_element/2

Element: the element to removeSet1: the set to remove the element from
returns: Returns Set1, but with Element removed.
Return Set1 but with Element removed.
filter/2

Pred: the boolean function to filter elements withSet1: the set to filter
returns: Returns a set containing elements of Set1 that satisfy the boolean function Fun. The evalua-
tion order is undefined.
Filter Set with Fun.

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 175

filtermap/2

Fun: the filter and map funSet1: the set to filter and map over
returns: Returns a set containing elements of Set1 that are filtered and mapped using Fun.
Filters and maps elements in Set1 with function Fun.
fold/3

Set: the set to fold over
returns: Returns the final value of the accumulator after folding the function over every element in
the set.
Fold function Fun over all elements in Set and return Accumulator.
from_list/1

List: the list of items that is used for building the set
returns: Returns a set of the elements in List.
Builds a set from the elements in List.
from_list/2

List: the list to be converted to a setVersion: only version 2 is supported
returns: Returns a set of the elements in List at the given version.
Builds a set from the elements in List using the specified version. Only v2 format is supported.
intersection/1

SetList: the non-empty list of sets
returns: Returns the intersection of the non-empty list of sets.
Return the intersection of the list of sets.
intersection/2

Set1: the first setSet2: the second set
returns: Returns the intersection of Set1 and Set2.
Return the intersection of Set1 and Set2.
is_disjoint/2

Set1: the first setSet2: the second set
returns: Returns true if Set1 and Set2 are disjoint (have no elements in common), otherwise
false.
Check whether Set1 and Set2 are disjoint.
is_element/2

Element: the element to checkSet: the set to check against
returns: Returns true if Element is an element of Set, otherwise false.
Return true if Element is an element of Set, else false.
is_empty/1

Set: the set to be checked for emptiness
returns: Returns true if Set is an empty set, otherwise false.
Returns true if Set is an empty set, otherwise false.
is_equal/2

Set1: first set to be checked for equalitySet2: second set to be checked for equality

AtomVM documentation, Release 0.6.6+git.db7fa169

176 Chapter 11. API Reference Documentation

returns: Return true if Set1 and Set2 contain the same elements, otherwise false.
Returns true if Set1 and Set2 are equal, that is when every element of one set is also a member of
the respective other set, otherwise false.
is_set/1

Set: the term that will be checked
returns: Return true if Set is a set of elements, else false.
Returns true if Set appears to be a set of elements, otherwise false.
Note that the test is shallow and will return true for any term that coincides with the possible repre-
sentations of a set.
is_subset/2

Set1: the first setSet2: the second set
returns: Returns true when every element of Set1 is also a member of Set2, otherwise false.
Return ‘true’ when every element of Set1 is also a member of Set2, else ‘false’.
map/2

Fun: the mapping functionSet1: the set to map over
returns: Returns a set containing elements of Set1 that are mapped using Fun.
Map Set with Fun.
new/0

returns: Returns a new empty set.
Returns a new empty set using the v2 format (a map).
new/1

Version: must be {version, 2}
returns: Returns a new empty set.
Returns a new empty set (only v2 format is supported).
size/1

Set: the set for which size will be returned
returns: Return the number of elements in Set.
Returns the number of elements in Set.
subtract/2

Set1: the first setSet2: the second set
returns: Returns only the elements of Set1 that are not also elements of Set2.
Return all and only the elements of Set1 which are not also in Set2.
to_list/1

Set: the set to be converted to a list
returns: Return the elements in Set as a list.
Returns the elements of Set as a list. The order of the returned elements is undefined.
union/1

SetList: the list of sets
returns: Returns the merged (union) set of the list of sets.
Return the union of the list of sets.

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 177

union/2

Set1: the first setSet2: the second set
returns: Returns the merged (union) set of Set1 and Set2.
Return the union of Set1 and Set2.
Module socket

• Data Types
• Function Index
• Function Details

Data Types
domain()
in_addr()
port_number()
protocol()
sockaddr()
sockaddr_in()
socket()

abstract datatype: socket()
socket_option()
type()

Function Index

Function Details

accept/1

Equivalent to socket:accept(ListeningSocket, infinity).
accept/2

Socket: the socketTimeout: timeout (in milliseconds)
returns: {ok, Connection} if successful; {error, Reason}, otherwise.
Wait for the socket to accept a connection.
Wait for the socket to accept a connection. The socket should be set to listen for connections.
Note that this function will block until a connection is made from a client. Typically, users will spawn
a call to accept in a separate process.
Example:
{ok, ConnectedSocket} = socket:accept(ListeningSocket)

bind/2

Socket: the socketAddress: the address to which to bind the socket
returns: ok if successful; {error, Reason}, otherwise.
Bind a socket to an interface.
Bind a socket to an interface, via a socket address. Use any to bind to all interfaces. Use loopback to
bind to the loopback address. To specify a port, use a map containing the network family, address,
and port.
Example:
ok = socket:bind(ListeningSocket, #{family => inet, addr => any, port =>
44404})

AtomVM documentation, Release 0.6.6+git.db7fa169

178 Chapter 11. API Reference Documentation

close/1

Socket: the socket
returns: ok if successful; {error, Reason}, otherwise.
Close a socket.
Close a previously opened socket.
Example:
ok = socket:close(Socket)

connect/2

Socket: the socketAddress: the address to which to connect the socket
returns: ok if successful; {error, Reason}, otherwise.
Wait for the socket to connect to an address.
Wait for the socket to connect to an address. The socket should be a connection-based socket.
Note that this function will block until a connection is made to a server.
Example:
ok = socket:connect(Socket, #{family => inet, addr => loopback, port =>
44404})

listen/1

Socket: the socket
returns: ok if successful; {error, Reason}, otherwise.
Set the socket to listen for connections.
Listen for connections. The socket should be a connection-based socket and should be bound to
an address and port.
Example:
ok = socket:listen(ListeningSocket)

listen/2

Socket: the socketBacklog: the maximum length for the queue of pending connections
returns: ok if successful; {error, Reason}, otherwise.
Set the socket to listen for connections.
Listen for connections. The socket should be a connection-based socket and should be bound to
an address and port.
Use the Backlog to specify the maximum length for the queue of pending connections
Example:
ok = socket:listen(ListeningSocket, 4)

open/3

Domain: the network domainType: the network typeProtocol: the network protocol
returns: {ok, Socket} if successful; {error, Reason}, otherwise.
Create a socket.
Create a socket with a specified domain, type, and protocol. Use the returned socket for communica-
tions.
Example:
{ok, ListeningSocket} = socket:open(inet, stream, tcp)

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 179

peername/1

Socket: the socket
returns: {ok, Address} if successful; {error, Reason}, otherwise.
Return the address of the peer connected to the specified socket.
Example:
{ok, Address} = socket:peername(ConnectedSocket)

recv/1

Equivalent to socket:recv(Socket, 0).
recv/2

Equivalent to socket:recv(Socket, Length, infinity).
recv/3

Socket: the socketLength: number of bytes to receiveTimeout: timeout (in milliseconds)
returns: {ok, Data} if successful; {error, Reason}, otherwise.
Receive data on the specified socket.
This function is equivalent to recvfrom/3 except for the return type.
Example:
{ok, Data} = socket:recv(ConnectedSocket)

recvfrom/1

Equivalent to socket:recvfrom(Socket, 0).
recvfrom/2

Equivalent to socket:recvfrom(Socket, Length, infinity).
recvfrom/3

Socket: the socketLength: number of bytes to receiveTimeout: timeout (in milliseconds)
returns: {ok, {Address, Data}} if successful; {error, Reason}, otherwise.
Receive data on the specified socket, returning the from address.
Note that this function will block until data is received on the socket.
Example:
{ok, {Address, Data}} = socket:recvfrom(ConnectedSocket)

If socket is UDP, the function retrieves the first available packet and truncate it to Length bytes, unless
Length is 0 in which case it returns the whole packet (“all available”).
If socket is TCP and Length is 0, this function retrieves all available data without waiting (using peek
if the platform allows it). If socket is TCP and Length is not 0, this function waits until Length bytes
are available and return these bytes.
send/2

Socket: the socketData: the data to send
returns: {ok, Rest} if successful; {error, Reason}, otherwise.
Send data on the specified socket.
Note that this function will block until data is sent on the socket. The data may not have been
received by the intended recipient, and the data may not even have been sent over the network.
Example:
ok = socket:send(ConnectedSocket, Data)

AtomVM documentation, Release 0.6.6+git.db7fa169

180 Chapter 11. API Reference Documentation

sendto/3

Socket: the socketData: the data to sendDest: the destination to which to send the data
returns: {ok, Rest} if successful; {error, Reason}, otherwise.
Send data on the specified socket to the specified destination.
Note that this function will block until data is sent on the socket. The data may not have been
received by the intended recipient, and the data may not even have been sent over the network.
Example:
ok = socket:sendto(ConnectedSocket, Data, Dest)

setopt/3

Socket: the socketSocketOption: the optionValue: the option value
returns: {ok, Address} if successful; {error, Reason}, otherwise.
Set a socket option.
Set an option on a socket.
Currently, the following options are supported:
Example:
ok = socket:setopt(ListeningSocket, {socket, reuseaddr}, true) ok =
socket:setopt(ListeningSocket, {socket, linger}, #{onoff => true, linger =>
0})

shutdown/2

Socket: the socketHow: how to shut the socket down
returns: ok if successful; {error, Reason}, otherwise.
Shut down one or both ends of a full-duplex socket connection.
Example:
ok = socket:shutdown(Socket, read_write)

sockname/1

Socket: the socket
returns: {ok, Address} if successful; {error, Reason}, otherwise.
Return the current address for the specified socket.
Example:
{ok, Address} = socket:sockname(ConnectedSocket)

Module ssl

• Data Types
• Function Index
• Function Details

Behaviours: gen_server.
Data Types
client_option()
host()
hostname()
ip_address()
reason()

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 181

sni()
socket_option()
sslsocket()

abstract datatype: sslsocket()
tls_client_option()

Function Index

Function Details

close/1

connect/3

handle_call/3

handle_call(X1, From, State) -> any()

handle_cast/2

handle_cast(Msg, State) -> any()

handle_info/2

handle_info(Msg, State) -> any()

init/1

init(X1) -> any()

recv/2

send/2

start/0

stop/0

terminate/2

terminate(Reason, State) -> any()

Module string

• Description
• Function Index
• Function Details

An implementation of the Erlang/OTP string interface.
Description

This module implements a strict subset of the Erlang/OTP string interface.
Function Index

Function Details

find/2

String: string to search inSearchPattern: pattern to search
returns: remainder of String starting from first occurrence of SearchPattern or nomatch if SearchPat-
tern cannot be found in String
Equivalent to find(String, SearchPattern, leading).
find/3

String: string to search inSearchPattern: pattern to searchDirection: direction to search,

AtomVM documentation, Release 0.6.6+git.db7fa169

182 Chapter 11. API Reference Documentation

leading or trailing
returns: remainder of String starting from first or last occurrence of SearchPattern or nomatch if
SearchPattern cannot be found in String
split/2

String: a string to splitPattern: the search pattern to split at
returns: chardata
Equivalent to split(String, Pattern, leading).
split/3

String: a string to splitPattern: the search pattern to split atWhere: position to split (leading, trail-
ing, or all)
returns: chardata
Splits String where SearchPattern is encountered and return the remaining parts.
Where, default leading, indicates whether the leading, the trailing or all encounters of SearchPattern
will split String.
Example:

 0> string:split("ab..bc..cd", "..").
 ["ab","bc..cd"]
 1> string:split(<<"ab..bc..cd">>, "..", trailing).
 [<<"ab..bc">>,<<"cd">>]
 2> string:split(<<"ab..bc....cd">>, "..", all).
 [<<"ab">>,<<"bc">>,<<>>,<<"cd">>]

to_lower/1

Input: a string or character to convert
returns: a Character or string
Convert string or character to uppercase.
The specified string or character is case-converted. Notice that the supported character set is ISO/IEC
8859-1 (also called Latin 1); all values outside this set are unchanged
to_upper/1

Input: a string or character to convert
returns: a Character or string
Convert string or character to uppercase.
The specified string or character is case-converted. Notice that the supported character set is ISO/IEC
8859-1 (also called Latin 1); all values outside this set are unchanged
trim/1

String: a string or character to trim whitespace
returns: a Character or string
Equivalent to trim(String, both).
trim/2

String: a string or character to trimDirection: an atom indicating the direction from which to
remove whitespace
returns: a Character or string
Returns a string, where leading or trailing, or both, whitespace has been removed.
If omitted, Direction is both.

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 183

Example:

 1> string:trim("\t Hello \n").
 "Hello"
 2> string:trim(<<"\t Hello \n">>, leading).
 <<"Hello \n">>
 3> string:trim(<<".Hello.\n">>, trailing, "\n.").
 <<".Hello">>

Module supervisor

• Function Index
• Function Details

Function Index

Function Details

handle_call/3

handle_call(Msg, _from, State) -> any()

handle_cast/2

handle_cast(Msg, State) -> any()

handle_info/2

handle_info(Msg, State) -> any()

init/1

init(X1) -> any()

start_link/2

start_link(Module, Args) -> any()

start_link/3

start_link(SupName, Module, Args) -> any()

Module timer

• Description
• Function Index
• Function Details

An implementation of the Erlang/OTP timer interface.
Description

This module implements a strict subset of the Erlang/OTP timer interface.
Function Index

Function Details

sleep/1

Timeout: number of milliseconds to sleep or infinity
returns: ok
Pauses the execution of the current process for a given number of milliseconds, or forever, using
infinity as the parameter.

AtomVM documentation, Release 0.6.6+git.db7fa169

184 Chapter 11. API Reference Documentation

Module unicode

• Description
• Data Types
• Function Index
• Function Details

An implementation of the Erlang/OTP unicode interface.
Description

This module implements a strict subset of the Erlang/OTP unicode interface.
Data Types
chardata()
charlist()
encoding()
latin1_chardata()
unicode_binary()

Function Index

Function Details

characters_to_binary/1

Data: data to convert to UTF8
returns: an utf8 binary or a tuple if conversion failed.
Equivalent to characters_to_binary(Data, utf8, utf8).
Convert character data to an UTF8 binary
characters_to_binary/2

Data: data to convert to UTF8InEncoding: encoding of data
returns: an utf8 binary or a tuple if conversion failed.
Equivalent to characters_to_binary(Data, InEncoding, utf8).
Convert character data in a given encoding to an UTF8 binary
characters_to_binary/3

Data: data to convert to UTF8InEncoding: encoding of input dataOutEncoding: output encoding
returns: an encoded binary or a tuple if conversion failed.
Convert character data in a given encoding to a binary in a given encoding.
If conversion fails, the function returns a tuple with three elements:

• First element is error or incomplete. incomplete means the conversion failed because of
an incomplete unicode transform at the very end of data.

• Second element is what has been converted so far.
• Third element is the remaining data to be converted, for debugging purposes. This remaining

data can differ with what Erlang/OTP returns.

Also, Erlang/OTP’s implementation may error with badarg for parameters for which this function
merely returns an error tuple.
characters_to_list/1

Data: data to convert to Unicode

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 185

returns: a list of characters or a tuple if conversion failed.
Convert UTF-8 data to a list of Unicode characters.
If conversion fails, the function returns a tuple with three elements:

• First element is error or incomplete. incomplete means the conversion failed because of
an incomplete unicode transform at the very end of data.

• Second element is what has been converted so far.
• Third element is the remaining data to be converted, for debugging purposes. This remaining

data can differ with what Erlang/OTP returns.

characters_to_list/2

Data: data to convertEncoding: encoding of data to convert
returns: a list of characters or a tuple if conversion failed.
Convert UTF-8 or Latin1 data to a list of Unicode characters. Following Erlang/OTP, if input encoding
is latin1, this function returns an error tuple if a character > 255 is passed (in a list). Otherwise, it will
accept any character within Unicode range (0-0x10FFFF).
See also: characters_to_list/1.

11.1.2 eavmlib

The eavmlib library
Modules

Module ahttp_client

• Data Types
• Function Index
• Function Details

Data Types
backend()
connection()

abstract datatype: connection()
data_response()
done_response()
error_tuple()
header_continuation_response()
header_response()
host()
option()
protocol()
response()
socket_message()
status_response()

Function Index

Function Details

close/1

Conn: the connection

AtomVM documentation, Release 0.6.6+git.db7fa169

186 Chapter 11. API Reference Documentation

returns: Either ok or an error tuple.
Closes the connection.
connect/4

Protocol: the protocol, either http or httpsHost: the server hostnamePort: the server port number,
usually 80 (http) or 443 (https)Options: the property list with http client and connection options
returns: Either a http connection result tuple or an error tuple
Connects to the http(s) server.
The Host parameter may be a fully qualified host name or a string containing a valid dotted pair IP
address. (Currently, only IPv4 is supported). Host can be also a binary.
The Options can be used for providing connection options such as SSL {verify, verify_none},
gen_tcp options such as {active, false} and ahttp_client {parse_headers,
[<<"HeaderName">>]}.
recv/2

Conn: the connectionLen: the number of bytes will be received, when using 0 all pending bytes are
received
returns: Either an ok tuple with the updated connection and a list of responses or an error tuple.
Receive and parse a number of bytes from the http connection.
This function should be used when the connection has been opened using {active, false}.
See also stream/2 for more information about the responses list.
request/5

Conn: the connectionMethod: a http method such as “GET”, “POST”, “PUT”, etc…Path: the path to
the http resource, such as “/”Headers: a list of headersBody: the body that is sent to the server, may
be undefined or nil when there is no body
returns: Either a result tuple with the updated http connection and a reference to the http request, or
an error tuple.
Makes a http request using given method on provided path.
When using methods such as GET the body should be omited using either undefined or nil (they
are both equivalent).
When uploading a smaller body (a single binary that fits in memory) the body binary can be
provided.
stream option can be used with stream_request_body/3 in order to upload a bigger binary in
streaming mode. This option should be combined with Content-Length header.
As soon as the request is sent to the server, a tuple such as {ok, Conn, Ref} is returned, otherwise
an error tuple is returned, such as {error, {gen_tcp, econnrefused}}.
The returned connection should be used for the next call, such as to stream/2 (when using active
mode) or recv/3 (when using passive mode). Ref is meant to identify a single request, so any
response to a specific request will be identified from the same reference.
stream/2

Conn: the connectionMsg: a received message
returns: Either a list of responses, unknown or an error tuple.
This function should be used when in active mode in order to process socket messages.
If a socket message is streamed using this function, a tuple with a list of http responses is returned
(e.g. `{ok, UpdatedConn, Responses}``, or an error tuple.
Otherwise unknown is returned, that means that the message is not a socket message tied to the open
connection, and it should be handled in some other way.

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 187

The first returned response to a new request is a status {status, Ref, 200} for a successful
response. After that headers and data may follow.
Since the response might span multiple socket messages, stream/2 may be called multiple times.
Each time the latest UpdatedConn must be used.
stream_request_body/3

Conn: the connectionRef: the reference to the pending requestBodyChunk: a chunk of the body that
will be sent
returns: Either ok or an error tuple.
Uploads a chunk of request body.
This function should be used when stream has been used as Body parameter.
Module atomvm

• Description
• Data Types
• Function Index
• Function Details

AtomVM-specific APIs.
Description

This module contains functions that are specific to the AtomVM platform.
Data Types
avm_path()
platform_name()
posix_dir()

abstract datatype: posix_dir()
posix_error()
posix_fd()

abstract datatype: posix_fd()
posix_open_flag()

Function Index

Function Details

add_avm_pack_binary/2

AVMData: AVM data.Options: Options, as a property list.
returns: ok
Add code from an AVM binary to your application.
This function will add the data in the AVMData parameter to your application. The data is assumed
to be valid AVM data (e.g, as generated by packbeam tooling).
Failure to properly load AVM data is result in a runtime error
add_avm_pack_file/2

AVMPath: Path to AVM data.Options: Options, as a property list.
returns: ok
Add code from an AVM binary to your application.
This function will add the data located in the AVMPath parameter to your application. The data is
assumed to be valid AVM data (e.g, as generated by packbeam tooling).

AtomVM documentation, Release 0.6.6+git.db7fa169

188 Chapter 11. API Reference Documentation

On generic_unix platforms, the AVMPath may be a valid file system path to an AVM file.
On esp32 platforms, the AVMPath should be the name of an ESP32 flash partition, prefixed with
the string /dev/partition/by-name/. Thus, for example, if you specify /dev/partition
/by-name/main2.app as the AVMPath, the ESP32 flash should contain a data partition with
the name main2.app
Failure to properly load AVM path is result in a runtime error
close_avm_pack/2

Name: the AVM name.Options: Options, as a property list.
returns: ok | error
Close previously opened AVM binary from your application.
This function will close the data referenced by the Name parameter from your application. The Name
parameter must reference previously opened AVM data.
Failure to close AVM data is result in a runtime error
get_start_beam/1

AVM: Name of avm (atom)
returns: the name of the start module (with suffix)
Get the start beam for a given avm
platform/0

returns: The platform name.
Return the platform moniker. You may use this function to uniquely identify the platform type on
which your application is running.
posix_clock_settime/2

ClockId: The clock idValueSinceUnixEpoch: The value, in specified seconds and nanoseconds,
since the UNIX epoch (Jan 1, 1970)
returns: ok or an error tuple
Set the system time.
This function sets the system time to the specified value, expressed as a tuple containing seconds and
nanoseconds since the UNIX epoch (Jan 1, 1970). Coordinates are all in UTC.
Note. Some systems may require special permissions to call this function.
posix_close/1

File: Descriptor to a file to close
returns: ok or an error tuple
Close a file that was opened with posix_open/2,3
posix_closedir/1

Dir: Descriptor to a directory to close
returns: ok or an error tuple
Close a directory that was opened with posix_opendir/1
posix_open/2

Path: Path to the file to openFlags: List of flags passed to open(3).
returns: A tuple with a file descriptor or an error tuple.
Open a file (on platforms that have open(3)). The file is automatically closed when the file descriptor
is garbage collected.

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 189

Files are automatically opened with O_NONBLOCK. Other flags can be passed.
posix_open/3

Path: Path to the file to openFlags: List of flags passed to open(3).Mode: Mode passed to open(3)
for created file.
returns: A tuple with a file descriptor or an error tuple.
Open a file (on platforms that have open(3)). This variant can be used to specify the mode for new
file.
posix_opendir/1

Path: Path to the directory to open
returns: A tuple with a directory descriptor or an error tuple.
Open a file (on platforms that have opendir(3)).
posix_read/2

File: Descriptor to an open fileCount: Maximum number of bytes to read
returns: a tuple with read bytes, eof or an error tuple
Read at most Count bytes from a file. Files are open non-blocking. àtomvm:posix_select_read/3’ can
non-blocking. àtomvm:posix_select_read/3’ can be used to determine if the file can be read. eof is
returned if no more data can be read because the file cursor reached the end.
posix_readdir/1

Dir: Descriptor to an open directory
returns: a {dirent, InodeNo, Name} tuple, eof or an error tuple
Read a directory entry eof is returned if no more data can be read because the directory cursor
reached the end.
posix_write/2

File: Descriptor to an open fileData: Data to write
returns: a tuple with the number of written bytes or an error tuple
Write data to a file. Files are open non-blocking. àtomvm:posix_select_write/3’ can be used to deter-
mine if the file can be written.
rand_bytes/1

Len: non-negative integer
returns: Binary containing random sequence of bytes of length Len.
This function is deprecated: Use crypto:strong_rand_bytes/1 instead.
Returns a binary containing random sequence of bytes of length Len. Supplying a negative value will
result in a badarg error. This function will use a cryptographically strong RNG if available. Otherwise,
the random value is generated using a PRNG.
random/0

returns: random 32-bit integer.
Returns a random 32-bit integer value. This function will use a cryptographically strong RNG if avail-
able. Otherwise, the random value is generated using a PRNG.
read_priv/2

App: application name.Path: path to the resource.
returns: Binary containing the resource content.
This function allows to fetch priv/ resources content.

AtomVM documentation, Release 0.6.6+git.db7fa169

190 Chapter 11. API Reference Documentation

Module avm_pubsub

• Function Index
• Function Details

Function Index

Function Details

handle_call/3

handle_call(X1, From, Table) -> any()

handle_info/2

handle_info(Info, Table) -> any()

init/1

init(X1) -> any()

pub/3

pub(PubSub, Topic, Term) -> any()

start/0

start() -> any()

start/1

start(LocalName) -> any()

sub/2

sub(PubSub, Topic) -> any()

sub/3

sub(PubSub, Topic, Pid) -> any()

terminate/2

terminate(Reason, State) -> any()

unsub/2

unsub(PubSub, Topic) -> any()

unsub/3

unsub(PubSub, Topic, Pid) -> any()

Module console

• Description
• Function Index
• Function Details

This modules supports output of string data to the console.
Function Index

Function Details

flush/0

returns: ok if the data was written, or {error, Reason}, if there was an error.
Flush any previously written data to the console.

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 191

print/1

Text: the data to write to the console
returns: ok if the data was written, or {error, Reason}, if there was an error.
Write a string to the console.
See also: erlang:display/1.
puts/1

Text: the string data to write to the console
returns: ok if the data was written, or {error, Reason}, if there was an error.
Write a string to the console.
Note. This operation will only write string data.The output is not suffixed with a newline character or
sequence.To print an erlang term, use erlang:display/1.
See also: erlang:display/1.
Module emscripten

• Description
• Data Types
• Function Index
• Function Details

emscripten API.
Description

The functions in this module broadly reflect emscripten’s API and obviously are only implemented for
the emscripten platform.
See Emscripten’s API documentation for more information about these APIs.
The counterpart of functions defined in this module are two main Javascript functions that can be
used to send messages to Erlang.

 Module.cast('some_proc', 'message')
 await Module.call('some_proc', 'message')

These respectively send the following messages to Erlang process registered as some_proc:

 {emscripten, {cast, <<"message">>}}
 {emscripten, {call, Promise, <<"message">>}}

Promise should be passed to promise_resolve/1,2 or promise_reject/1,2 as documented
below.
Data Types
focus_event()
html5_target()
keyboard_event()
listener_handle()

abstract datatype: listener_handle()
mouse_event()
promise()

abstract datatype: promise()
register_error_reason()
register_option()

AtomVM documentation, Release 0.6.6+git.db7fa169

192 Chapter 11. API Reference Documentation

https://emscripten.org/docs/api_reference/index.md

register_options()
register_result()
run_script_opt()
touch_event()
touch_point()
ui_event()
wheel_event()

Function Index

Function Details

promise_reject/1

Equivalent to promise_reject(_Promise, 0).
promise_reject/2

_Promise: Opaque promise resource_Value: Value to send to Javascript, must be an integer or
a string.
Reject a promise with a given result. This is similar to promise_resolve except the promise is
rejected.
promise_resolve/1

Equivalent to promise_resolve(_Promise, 0).
promise_resolve/2

_Promise: Opaque promise resource_Value: Value to send to Javascript, must be an integer or
a string.
Successfully resolve a promise with a given result. A promise is currently only obtained through
synchronous calls using Module.call() javascript function. If Javascript calls:

 await Module.call('some_proc', 'message')

and if an Erlang process is registered as some_proc, then the process will receive a message:
and the Javascript caller will wait until promise_resolve or promise_reject is called. If
the process doesn’t exist, the promise will be rejected with ‘no_proc’. Likewise if the Promise is
garbage collected by the Erlang VM.
register_blur_callback/1

Equivalent to register_blur_callback(_Target, []).
register_blur_callback/2

Register for blur events. Events are sent as:

 {emscripten, {blur, focus_event()}}

See also: register_keypress_callback/2.
register_blur_callback/3

Register for blur events. Events are sent as:

 {emscripten, {blur, focus_event()}, UserData}

See also: register_keypress_callback/2.
register_click_callback/1

Equivalent to register_click_callback(_Target, []).

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 193

register_click_callback/2

Register for click events. Events are sent as:

 {emscripten, {click, mouse_event()}}

See also: register_keypress_callback/2.
register_click_callback/3

Register for click events. Events are sent as:

 {emscripten, {click, mouse_event()}, UserData}

See also: register_keypress_callback/2.
register_dblclick_callback/1

Equivalent to register_dblclick_callback(_Target, []).
register_dblclick_callback/2

Register for dblclick events.
See also: register_click_callback/2.
register_dblclick_callback/3

Register for dblclick events.
See also: register_click_callback/2.
register_focus_callback/1

Equivalent to register_focus_callback(_Target, []).
register_focus_callback/2

Register for focus events.
See also: register_blur_callback/2.
register_focus_callback/3

Register for focus events.
See also: register_blur_callback/2.
register_focusin_callback/1

Equivalent to register_focusin_callback(_Target, []).
register_focusin_callback/2

Register for focusin events.
See also: register_blur_callback/2.
register_focusin_callback/3

Register for focusin events.
See also: register_blur_callback/2.
register_focusout_callback/1

Equivalent to register_focusout_callback(_Target, []).
register_focusout_callback/2

Register for focusout events.
See also: register_blur_callback/2.

AtomVM documentation, Release 0.6.6+git.db7fa169

194 Chapter 11. API Reference Documentation

register_focusout_callback/3

Register for focusout events.
See also: register_blur_callback/2.
register_keydown_callback/1

Equivalent to register_keydown_callback(_Target, []).
register_keydown_callback/2

Register for keydown events.
See also: register_keypress_callback/2.
register_keydown_callback/3

Register for keydown events.
See also: register_keypress_callback/2.
register_keypress_callback/1

Equivalent to register_keypress_callback(_Target, []).
register_keypress_callback/2

Register for keypress events. This function registers with no user data and events are sent as:

 {emscripten, {keypress, keyboard_event()}}

See also: register_keypress_callback/3.
register_keypress_callback/3

_Target: target to register keypress on_Options: options for event handling_UserData: user data
passed back
Register for keypress events. This function registers keypress events on a given target. Target can be
specified as special atoms window for Javascript’s window, document for window.document.
screen is also supported, but it doesn’t seem to work, see https://github.com
/emscripten-core/emscripten/issues/19865

Second parameter specifies options which can be a boolean() to match useCapture in
Emscripten’s API. Alternatively, the option can be a proplist() with use_capture and
prevent_default keys. prevent_default determines what the handler should return to
Javascript, true meaning that the default should be prevented.
Third parameter is user data that is passed back. Indeed, when an event occurs, the following
message is sent to the process that registered the event:

 {emscripten, {keypress, keyboard_event()}, UserData}

The function eventually returns a listener_handle() or an error. The handler is an opaque
resource that actually contains a copy of UserData. Please note that if the calling process dies,
the callback and any callback for the same event on the same target are unregistered.
register_keyup_callback/1

Equivalent to register_keyup_callback(_Target, []).
register_keyup_callback/2

Register for keyup events.
See also: register_keypress_callback/2.
register_keyup_callback/3

Register for keyup events.
See also: register_keypress_callback/2.

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 195

https://github.com/emscripten-core/emscripten/issues/19865
https://github.com/emscripten-core/emscripten/issues/19865

register_mousedown_callback/1

Equivalent to register_mousedown_callback(_Target, []).
register_mousedown_callback/2

Register for mousedown events.
See also: register_click_callback/2.
register_mousedown_callback/3

Register for mousedown events.
See also: register_click_callback/2.
register_mouseenter_callback/1

Equivalent to register_mouseenter_callback(_Target, []).
register_mouseenter_callback/2

Register for mouseenter events.
See also: register_click_callback/2.
register_mouseenter_callback/3

Register for mouseenter events.
See also: register_click_callback/2.
register_mouseleave_callback/1

Equivalent to register_mouseleave_callback(_Target, []).
register_mouseleave_callback/2

Register for mouseleave events.
See also: register_click_callback/2.
register_mouseleave_callback/3

Register for mouseleave events.
See also: register_click_callback/2.
register_mousemove_callback/1

Equivalent to register_mousemove_callback(_Target, []).
register_mousemove_callback/2

Register for mousemove events.
See also: register_click_callback/2.
register_mousemove_callback/3

Register for mousemove events.
See also: register_click_callback/2.
register_mouseout_callback/1

Equivalent to register_mouseout_callback(_Target, []).
register_mouseout_callback/2

Register for mouseout events.
See also: register_click_callback/2.
register_mouseout_callback/3

Register for mouseout events.

AtomVM documentation, Release 0.6.6+git.db7fa169

196 Chapter 11. API Reference Documentation

See also: register_click_callback/2.
register_mouseover_callback/1

Equivalent to register_mouseover_callback(_Target, []).
register_mouseover_callback/2

Register for mouseover events.
See also: register_click_callback/2.
register_mouseover_callback/3

Register for mouseover events.
See also: register_click_callback/2.
register_mouseup_callback/1

Equivalent to register_mouseup_callback(_Target, []).
register_mouseup_callback/2

Register for mouseup events.
See also: register_click_callback/2.
register_mouseup_callback/3

Register for mouseup events.
See also: register_click_callback/2.
register_resize_callback/1

Equivalent to register_resize_callback(_Target, []).
register_resize_callback/2

Register for resize events. Events are sent as:

 {emscripten, {resize, ui_event()}}

See also: register_keypress_callback/2.
register_resize_callback/3

Register for resize events. Events are sent as:

 {emscripten, {resize, ui_event()}, UserData}

See also: register_keypress_callback/2.
register_scroll_callback/1

Equivalent to register_scroll_callback(_Target, []).
register_scroll_callback/2

Register for scroll events.
See also: register_resize_callback/2.
register_scroll_callback/3

Register for scroll events.
See also: register_resize_callback/2.
register_touchcancel_callback/1

Equivalent to register_touchcancel_callback(_Target, []).

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 197

register_touchcancel_callback/2

Register for touchcancel events.
See also: register_touchstart_callback/2.
register_touchcancel_callback/3

Register for touchcancel events.
See also: register_touchstart_callback/2.
register_touchend_callback/1

Equivalent to register_touchend_callback(_Target, []).
register_touchend_callback/2

Register for touchend events.
See also: register_touchstart_callback/2.
register_touchend_callback/3

Register for touchend events.
See also: register_touchstart_callback/2.
register_touchmove_callback/1

Equivalent to register_touchmove_callback(_Target, []).
register_touchmove_callback/2

Register for touchmove events.
See also: register_touchstart_callback/2.
register_touchmove_callback/3

Register for touchmove events.
See also: register_touchstart_callback/2.
register_touchstart_callback/1

Equivalent to register_touchstart_callback(_Target, []).
register_touchstart_callback/2

Register for touchstart events. Events are sent as:

 {emscripten, {touchstart, touch_event()}}

See also: register_keypress_callback/2.
register_touchstart_callback/3

Register for touchstart events. Events are sent as:

 {emscripten, {touchstart, touch_event()}, UserData}

See also: register_keypress_callback/2.
register_wheel_callback/1

Equivalent to register_wheel_callback(_Target, []).
register_wheel_callback/2

Register for wheel events. Events are sent as:

 {emscripten, {wheel, wheel_event()}}

See also: register_keypress_callback/2.

AtomVM documentation, Release 0.6.6+git.db7fa169

198 Chapter 11. API Reference Documentation

register_wheel_callback/3

Register for wheel events. Events are sent as:

 {emscripten, {wheel, mouse_event()}, UserData}

See also: register_keypress_callback/2.
run_script/1

Equivalent to run_script(_Script, []).
run_script/2

_Script: Script to run_Options: List of options. If main_thread is specified, the script is run on
the main thread. If async, the script is run asynchronously, i.e. the caller does not wait for comple-
tion. Only applies if main_thread is specified.
returns: ok
Run a script. By default, the script is run in the current worker thread, which arguably may not be
very useful. Please note that exception handling is disabled, so the script should not throw and should
compile, otherwise this will crash the VM.
unregister_blur_callback/1

Unregister a blur event handler.
See also: unregister_keypress_callback/1.
unregister_click_callback/1

Unregister a click event handler.
See also: unregister_keypress_callback/1.
unregister_dblclick_callback/1

Unregister a dblclick event handler.
See also: unregister_click_callback/1.
unregister_focus_callback/1

Unregister a focus event handler.
See also: unregister_blur_callback/1.
unregister_focusin_callback/1

Unregister a focusin event handler.
See also: unregister_blur_callback/1.
unregister_focusout_callback/1

Unregister a focusout event handler.
See also: unregister_blur_callback/1.
unregister_keydown_callback/1

Unregister a keydown event handler.
See also: unregister_keypress_callback/1.
unregister_keypress_callback/1

_TargetOrHandle: Target or handle
returns: ok or an error
Unregister a keypress listener.
To match Emscripten’s API, this function can take a target. This function unregisters every keypress
listeners on the specified target.

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 199

Alternatively, this function can take a listener_handle() returned by
register_keypress_callback/1,2,3. This will still unregister every keypress listeners on
the same target.
Passing a listener_handle() is recommended to avoid surprises and for memory efficiency. If
a handle is passed, it can then be garbage collected. If a handle is not passed, but the process dies,
every keypress listener on the same target will be unregistered, including listeners that were later
registered. This is a known limitation of the implementation that favored avoiding memory leaks and
crashes.
unregister_keyup_callback/1

Unregister a keyup event handler.
See also: unregister_keypress_callback/1.
unregister_mousedown_callback/1

Unregister a mousedown event handler.
See also: unregister_click_callback/1.
unregister_mouseenter_callback/1

Unregister a mouseenter event handler.
See also: unregister_click_callback/1.
unregister_mouseleave_callback/1

Unregister a mouseleave event handler.
See also: unregister_click_callback/1.
unregister_mousemove_callback/1

Unregister a mousemove event handler.
See also: unregister_click_callback/1.
unregister_mouseout_callback/1

Unregister a mouseout event handler.
See also: unregister_click_callback/1.
unregister_mouseover_callback/1

Unregister a mouseover event handler.
See also: unregister_click_callback/1.
unregister_mouseup_callback/1

Unregister a mouseup event handler.
See also: unregister_click_callback/1.
unregister_resize_callback/1

Unregister a resize event handler.
See also: unregister_keypress_callback/1.
unregister_scroll_callback/1

Unregister a scroll event handler.
See also: unregister_resize_callback/1.
unregister_touchcancel_callback/1

Unregister a touchcancel event handler.
See also: unregister_touchstart_callback/1.

AtomVM documentation, Release 0.6.6+git.db7fa169

200 Chapter 11. API Reference Documentation

unregister_touchend_callback/1

Unregister a touchend event handler.
See also: unregister_touchstart_callback/1.
unregister_touchmove_callback/1

Unregister a touchmove event handler.
See also: unregister_touchstart_callback/1.
unregister_touchstart_callback/1

Unregister a touchstart event handler.
See also: unregister_keypress_callback/1.
unregister_wheel_callback/1

Unregister a wheel event handler.
See also: unregister_keypress_callback/1.
Module esp

• Description
• Data Types
• Function Index
• Function Details

ESP32-specific APIs.
Description

This module contains functions that are specific to the ESP32 platform.
Data Types
esp_partition()
esp_partition_address()
esp_partition_props()
esp_partition_size()
esp_partition_subtype()
esp_partition_type()
esp_reset_reason()
esp_wakeup_cause()
interface()
mac()
mounted_fs()

abstract datatype: mounted_fs()
task_wdt_config()
task_wdt_user_handle()

abstract datatype: task_wdt_user_handle()
Function Index

Function Details

deep_sleep/0

Put the esp32 into deep sleep. This function never returns. Program is restarted and wake up reason
can be inspected to determine how the esp32 was woken up.

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 201

deep_sleep/1

SleepMS: time to deep sleep in milliseconds
Put the esp32 into deep sleep. This function never returns. Program is restarted and wake up reason
can be inspected to determine if the esp32 was woken by the timeout or by another cause.
deep_sleep_enable_gpio_wakeup/2

Mask: bit mask of GPIO numbers which will cause wakeupMode:
level that will trigger the wakeup.
The available modes are:
returns: ok | error
Configure multiple gpio pins for wakeup from deep sleep. Implemented for SOCs that support it
(ESP32C2, ESP32C3, ESP32C6, ESP32P4)
freq_hz/0

returns: Clock frequency (in hz)
Return the clock frequency on the chip
get_default_mac/0

returns: The default MAC address of the ESP32 device.
Retrieve the default MAC address of the ESP32 device. This function accesses the EFUSE memory of
the ESP32 and reads the factory-programmed MAC address.
The mac address is returned as a 6-byte binary, per the IEEE 802 family of specifications.
get_mac/1

Interface: the ESP32 network interface
returns: The network MAC address of the specified interface
Return the network MAC address of the specified interface.
The mac address is returned as a 6-byte binary, per the IEEE 802 family of specifications.
mount/4

Source: the device that will be mountedTarget: the path where the filesystem will be mountedFS:
the filesystem, only fat is supported now
returns: either a tuple having ok and the mounted fs resource, or an error tuple
Mount a filesystem, and return a resource that can be used later for unmounting it
nvs_erase_all/0

This function is deprecated: Please do not use this function.
Equivalent to nvs_erase_all(?ATOMVM_NVS_NS).
nvs_erase_all/1

Namespace: NVS namespace
returns: ok
Erase all values in the specified namespace.
nvs_erase_key/1

Key: NVS key
returns: ok
This function is deprecated: Please do not use this function.
Equivalent to nvs_erase_key(?ATOMVM_NVS_NS, Key).

AtomVM documentation, Release 0.6.6+git.db7fa169

202 Chapter 11. API Reference Documentation

nvs_erase_key/2

Namespace: NVS namespaceKey: NVS key
returns: ok
Erase the value associated with a key. If a value does not exist for the specified key, no action is
performed.
nvs_fetch_binary/2

Namespace: NVS namespaceKey: NVS key
returns: tagged tuple with binary value associated with this key in NV storage, {error, not_found} if
there is no value associated with this key, or in general {error, Reason} for any other error.
Get the binary value associated with a key, or undefined, if there is no value associated with this key.
nvs_get_binary/1

This function is deprecated: Please do not use this function.
Equivalent to nvs_get_binary(?ATOMVM_NVS_NS, Key).
nvs_get_binary/2

Namespace: NVS namespaceKey: NVS key
returns: binary value associated with this key in NV storage, or undefined if there is no value associ-
ated with this key.
Get the binary value associated with a key, or undefined, if there is no value associated with this key.
nvs_get_binary/3

Namespace: NVS namespaceKey: NVS keyDefault: default binary value, if Key is not set in Names-
pace
returns: binary value associated with this key in NV storage, or Default if there is no value associated
with this key.
Get the binary value associated with a key, or Default, if there is no value associated with this key.
nvs_put_binary/3

Namespace: NVS namespaceKey: NVS keyValue: binary value
returns: ok
Set an binary value associated with a key. If a value exists for the specified key, it is over-written.
nvs_reformat/0

returns: ok
Reformat the entire NVS partition. WARNING. This will result in deleting all NVS data and should
be used with extreme caution!
nvs_set_binary/2

This function is deprecated: Please use nvs_put_binary instead.
Equivalent to nvs_set_binary(?ATOMVM_NVS_NS, Key, Value).
nvs_set_binary/3

Namespace: NVS namespaceKey: NVS keyValue: binary value
returns: ok
This function is deprecated: Please use nvs_put_binary instead.
Set an binary value associated with a key. If a value exists for the specified key, it is over-written.

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 203

partition_list/0

returns: List of partitions
Gets the list of partitions as tuples, such as {name, type, subtype, offset, size, props}. Type and
subtype are integers as described in esp-idf documentation.
reset_reason/0

returns: the reason for the restart
Returns the reason for the restart
restart/0

Restarts the ESP device
rtc_slow_get_binary/0

returns: the currently stored binary in RTC slow memory.
Get the binary currently stored in RTC slow memory. Must not be called unless the binary was stored
with rtc_slow_set_binary/1. A limited checksum is ran and this function may throw badarg if
the checksum is not valid.
rtc_slow_set_binary/1

Bin: binary to be stored in RTC slow memory
returns: ok
Store a binary to RTC slow memory. This memory is not erased on software reset and deep sleeps.
sleep_disable_ext1_wakeup_io/1

Mask: bit mask of GPIO numbers to reset.
returns: ok | error
Unconfigure one or more gpio pins for wakeup from deep sleep. Implemented for SOCs that support
it (ESP32, ESP32S2, ESP32S3, ESP32C6, ESP32H2). This function resets pins previously configured
with sleep_enable_ext1_wakeup_io.
Introduced in: ESP-IDF 5.3 and maybe 5.2.2
sleep_enable_ext0_wakeup/2

Pin: number of the pin to use as wakeup eventLevel: is the state to trigger a wakeup
returns: ok | error
Configure gpio wakeup from deep sleep. Implemented for SOCs that support it (ESP32, ESP32S2,
ESP32S3)
sleep_enable_ext1_wakeup/2

Mask: bit mask of GPIO numbers which will cause wakeupMode:
used to determine wakeup events
The available modes are:
returns: ok | error
This function is deprecated: This function will be removed in ESP-IDF 6.0. Use
sleep_enable_ext1_wakeup_io instead.
Configure multiple gpio pins for wakeup from deep sleep. Implemented for SOCs that support it
(ESP32, ESP32S2, ESP32S3, ESP32C6, ESP32H2).
sleep_enable_ext1_wakeup_io/2

Mask: bit mask of GPIO numbers which will cause wakeupMode:
used to determine wakeup events

AtomVM documentation, Release 0.6.6+git.db7fa169

204 Chapter 11. API Reference Documentation

The available modes are:
returns: ok | error
Configure multiple gpio pins for wakeup from deep sleep. Implemented for SOCs that support it
(ESP32, ESP32S2, ESP32S3, ESP32C6, ESP32H2). This function does not reset the previously set pins.
On some SOCs (ESP32C6, ESP32H2), pins can be configured with different levels.
Introduced in: ESP-IDF 5.3 and maybe 5.2.2
sleep_enable_ulp_wakeup/0

returns: Enable ulp wakeup
sleep_get_wakeup_cause/0

returns: the cause for the wake up
Returns the cause for the wakeup
task_wdt_add_user/1

Username: name of the user
returns: the handle to use with task_wdt_reset_user/1 or an error tuple.
Register a user of the task watchdog timer. Available with ESP-IDF 5.0 or higher.
task_wdt_deinit/0

returns: ok or an error tuple if tasks are subscribed (beyond idle tasks) or if the timer is not initialized
Deinitialize the task watchdog timer Available with ESP-IDF 5.0 or higher.
task_wdt_delete_user/1

UserHandle: handle for the user, obtained from task_wdt_add_user/1
returns: ok or an error tuple
Unsubscribe a given user from the task watchdog timer. Available with ESP-IDF 5.0 or higher.
task_wdt_init/1

Config: configuration for the watchdog timer
returns: ok or an error tuple
Initialize the task watchdog timer with a configuration Available with ESP-IDF 5.0 or higher.
task_wdt_reconfigure/1

Config: configuration for the watchdog timer
returns: ok or an error tuple
Update the configuration of the task watchdog timer Available with ESP-IDF 5.0 or higher.
task_wdt_reset_user/1

UserHandle: handle for the user, obtained from task_wdt_add_user/1
returns: ok or an error tuple
Reset the timer a previously registered user. Available with ESP-IDF 5.0 or higher.
umount/1

returns: either ok or an error tuple
Unmounts filesystem located at given path
Module esp_adc

• Description
• Data Types

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 205

• Function Index
• Function Details

Analog to digital peripheral support.
Behaviours: gen_server.
Description

Use this module to take ADC (analog voltage) readings. Currently this driver only supports the esp32
family of chips, but support for other platforms is planned in the future. On an ESP32 device ADC
unit 1 allows taking reading from pins 32-39. ADC unit2 is disabled by default for the ESP32 classic,
but when enabled in the build configuration allows pins 0, 2, 4, 12-15, and 25-27 to be used as long as
WiFi is not required by the application. Unit 2 is disabled for ESP32C3 due to its inaccurate results.
ADC unit 2 is enabled for all other ESP32 series with more than one ADC unit; there is an arbitrator
peripheral that allows ADC unit 2 to be used while WiFI is active. The pins available for ADC use
vary by device, check your datasheet for specific hardware support.
There are two sets of APIs for interacting with the ADC hardware, only one set of API may be used by
an application.
The core functionality is provided by the low level resource based nif functions. To use the resource
based nifs esp_adc:init/0 and esp_adc:deinit/1 will acquire and release the adc unit
resource needed for all other functions. A channel resource used to take measurements from a pin
can be obtained using esp_adc:acquire/4, and released using esp_adc:release_channel/1.
ADC measurements are taken using sample/3.
For convenience a gen_server managed set of APIs using pin numbers are also available. A pin may be
configured using esp_adc:start/1,2, measurements are taken using esp_adc:read/1,2, pins
can be released individually with esp_adc:stop/1, or the driver can be stopped completely using
esp_adc:stop/0.
Data Types
adc_pin()

ADC capable pins vary by chipset. Consult your datasheet.
adc_rsrc()
attenuation()

The decibel gain determines the maximum safe voltage to be measured. Default is db_11. The specific
range of voltages supported by each setting varies by device. Typical voltage ranges are depicted in
the table below:
Consult the datasheet for your device to determine the exact voltage ranges supported by each gain
setting. The option db_11 has been superseded by db_12. The optiondb_11 and will be deprecated
in a future release, applications should be updated to use db_12 (except for builds with ESP-IDF
versions prior to v5.2). To Continue to support older IDF version builds, the default will remain
db_11, which is the maximum tolerated voltage on all builds, as db_12 supported builds will auto-
matically use db_12 in place of db_11, when db_11 is deprecated in all builds the default will be
changed to db_12.
bit_width()

The default bit_max will select the highest value supported by the chipset. Some models only
support a single fixed bit width.
pin_option()
pin_options()
raw_value()

The maximum analog value is determined by bit_width().
read_option()

The value of the samples key is the number of samples to be taken and averaged when returning
a measurement, default is 64. For optimal stable readings use a 100nF ceramic capacitor input filter,

AtomVM documentation, Release 0.6.6+git.db7fa169

206 Chapter 11. API Reference Documentation

for more info consult Espressif’s “ADC Calibration Driver” documentation. The keys raw and
voltage determine if these values are included in the results or returned as undefined.
read_options()
reading()
voltage_reading()

The maximum safe millivolt value that can be measured is determined by attenuation(), this
value should never exceed the chips maximum input tolerance.
Function Index

Function Details

acquire/2

Pin: Pin to configure as ADCUnitHandle: The unit handle returned from init/0
returns: {ok, Channel::adc_rsrc()} | {error, Reason}
Equivalent to acquire(Pin, UnitHandle, bit_max, db_11).
Nif to initialize an ADC pin.
Initializes an ADC pin and returns a channel handle resources.
This is a low level nif that cannot be used in an application that uses the convenience functions.
acquire/4

Pin: Pin to configure as ADCUnitHandle: The unit handle returned from init/0BitWidth: Reso-
lution in bit to measureAttenuation: Decibel gain for voltage range
returns: {ok, Channel::adc_rsrc()} | {error, Reason}
Nif to initialize an ADC pin.
The BitWidth value bit_max may be used to automatically select the highest sample rate supported
by your ESP chip-set, or choose from a bit width supported by the device.
The Attenuation value can be used to adust the gain, and therefore safe measurement range on
voltage the exact range of voltages supported by each db gain varies by chip, consult the data sheet for
exact range of your model. For more information see the attenuation() type specification.
Use the returned Channel reference in subsequent ADC operations on the same pin.
This is a low level nif that cannot be used in an application that uses the convenience functions.
deinit/1

UnitResource: returned from init/0
returns: ok | {error, Reason}
Nif to release the ADC unit resource returned from init/0.
Stop the ADC driver and free the unit resource. All active ADC channels should be released using
release_channel/1 to free each configured channel before freeing the unit resource.
This is a low level nif that cannot be used in an application that uses the convenience functions.
init/0

returns: {ok, ADCUnit :: adc_rsrc()} | {error, Reason}
Nif to initialize the ADC unit hardware.
The returned ADC unit handle resource must be supplied for all future ADC operations.
This is a low level nif that cannot be used in an application that uses the convenience functions.
read/1

Pin: The pin from which to take ADC measurement
returns: {ok, {RawValue, MilliVolts}} | {error, Reason}

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 207

Equivalent to read(Pin, [raw, voltage, {samples, 64}]).
Take a reading using default values from an ADC pin.
This convenience function is used to take a measurement from a previously started adc pin.
This function cannot be used in an application that uses the low level nif APIs.
read/2

Pin: The pin from which to take ADC measurementReadOptions: Extra options
returns: {ok, {RawValue, MilliVolts}} | {error, Reason}
Take a reading from an ADC pin using the supplied options.
This convenience function is used to take a measurement from a previously started adc pin, using
the supplied read options parameter.
The Options parameter may be used to specify the behavior of the read operation.
If the ReadOptions contains the atom raw, then the raw value will be returned in the first element of
the returned tuple. Otherwise, this element will be the atom undefined.
If the ReadOptions contains the atom voltage, then the voltage value will be returned in millivolts
in the second element of the returned tuple. Otherwise, this element will be the atom undefined.
You may specify the number of samples to be taken and averaged over using the tuple {samples,
Samples::pos_integer()}, the default is 64.
If the error Reason is timeout and the adc channel is on unit 2 then WiFi is likely enabled and adc2
readings may be blocked until there is less network traffic. On and ESP32 classic the results for unit 2
will always be {error, timeout} if wifi is enabled.
This function cannot be used in an application that uses the low level nif APIs.
release_channel/1

ChannelResource: of the pin returned from acquire/4
returns: ok | {error, Reason}
Nif to deinitialize the specified ADC channel.
In the case that an error is returned it is safe to “drop” the ChannelResource handle from use. After
there are no remaining processes with references to the channel resource handle, the calibration
profile and any remaining resources associated with the channel will be released as part of the next
garbage collection event.
This is a low level nif that cannot be used in an application that uses the convenience functions.
sample/2

ChannelResource: of the pin returned from acquire/4UnitResource: of the pin returned from
init/0
returns: {ok, {RawValue, MilliVolts}} | {error, Reason}
Equivalent to sample(ChannelResource,UnitResource,[raw, voltage, {samples,
64}]).
Nif to take a reading using default values from an ADC channel.
This is a low level nif that cannot be used in an application that uses the convenience functions.
sample/3

ChannelResource: of the pin returned from acquire/4UnitResource: of the pin returned from
init/0ReadOptions: extra list of options to override defaults.
returns: {ok, {RawValue, MilliVolts}} | {error, Reason}
Nif to take a reading from an ADC channel.
The Options parameter may be used to specify the behavior of the read operation.

AtomVM documentation, Release 0.6.6+git.db7fa169

208 Chapter 11. API Reference Documentation

If the ReadOptions contains the atom raw, then the raw value will be returned in the first element of
the returned tuple. Otherwise, this element will be the atom undefined.
If the ReadOptions contains the atom voltage, then the voltage value will be returned in millivolts
in the second element of the returned tuple. Otherwise, this element will be the atom undefined.
You may specify the number of samples to be taken and averaged over using the tuple {samples,
Samples::pos_integer()}.
If the error Reason is timeout and the adc channel is on unit 2 then WiFi is likely enabled and adc2
readings may be blocked until there is less network traffic. On and ESP32 classic the results for unit 2
will always be {error, timeout} if wifi is enabled.
This is a low level nif that cannot be used in an application that uses the convenience functions.
start/0

returns: {ok, Pid}
Optionally initialize a gen_server managed ADC driver without a pin.
Use of this function is optional, but may be desired if the drivers pid is needed, or it is desireable to
start the driver without configuring an initial ADC channel.
Note: since only one instance of the driver is allowed it is registered with the name adc_driver,
which also may be used to directly call the gen_server.
This convenience function cannot be used in an application that uses the low level nif APIs.
start/1

Pin: Pin to configure as ADC
returns: ok | {error, Reason}
Equivalent to start(Pin, [{bitwidth, bit_max}, {atten, db_11}]).
Initialize a gen_server managed ADC pin with default options.
This convenience function configures an ADC pin with the default options for use with the optional
gen_server APIs. Default options are: [{bitwidth, bit_max}, {atten, db_11}]
This function cannot be used in an application that uses the low level nif APIs.
start/2

Pin: Pin to configure as ADCOptions: List of options to override default settings
returns: ok | {error, Reason}
Initialize a gen_server managed ADC pin with the supplied options.
This convenience function configures an ADC pin with the provided options to override the default
configuration: [{bitwidth, bit_max}, {atten, db_11}].
For more details about these options see the attenuation() and bit_width() type specifications.
This function cannot be used in an application that uses the low level nif APIs.
stop/0

returns: ok | {error, Reason}
Stop the ADC driver and release all resources.
This convenience function is used to completely stop the gen_server managed ADC driver and release
all resources.
Note: if an error is returned, a full shutdown of the ADC peripheral should still occur, and any
remaining resources freed with next VM garbage collection event. Regardless the gen_server will exit
normally and the adc peripheral will no longer be usable.
This function cannot be used in an application that uses the low level nif APIs.

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 209

stop/1

Pin: the pin to be released
returns: ok | {error, Reason}
De-initialize the specified ADC pin.
This convenience function is used to release a pin from the gen_server managed ADC driver. If
an error is returned the ADC channel will still be stopped and release internal resources during
the next VM garbage collection event, the pin will immediately no longer be useable in any case.
This function cannot be used in an application that uses the low level nif APIs.
Module gpio

• Description
• Data Types
• Function Index
• Function Details

GPIO driver module.
Description

This module provides functions for interacting with micro-controller GPIO (General Purpose Input
and Output) pins.
Note: -type pin() used in this driver refers to a pin number on Espressif chips and normal Rasp-
berry Pi Pico pins, or a tuple {GPIO_BANK, PIN} for STM32 chips and the “extra” GPIOs available on
the Pico-W.
Data Types
direction()

The direction is used to set the mode of operation for a GPIO pin, either as an input, an output, or
output with open drain. On the STM32 platform pull mode and output_speed must be set at the same
time as direction. See @type mode_config()
gpio()

This is the pid returned by gpio:start/0.
gpio_bank()

STM32 gpio banks vary by board, some only break out a thru h. The extra “WL” pins on Pico-W use
bank wl.
high_level()
level()

Valid pin levels can be atom or binary representation.
low_level()
mode_config()

Extended mode configuration options on STM32. Default pull() is floating, default output_speed()
is mhz_2 if options are omitted.
output_speed()

Output clock speed. Only available on STM32, default is mhz_2.
pin()

The pin definition for ESP32 and PR2040 is a non-negative integer. A tuple is used on the STM32 plat-
form and for the extra “WL” pins on the Pico-W.
pin_tuple()

A pin parameter on STM32 is a tuple consisting of a GPIO bank and pin number, also used on
the Pico-W for the extra “WL” pins 0..2.

AtomVM documentation, Release 0.6.6+git.db7fa169

210 Chapter 11. API Reference Documentation

pull()

Internal resistor pull mode. STM32 does not support up_down.
trigger()

Event type that will trigger a gpio_interrupt. STM32 only supports rising, falling, or both.
Function Index

Function Details

attach_interrupt/2

Pin: number of the pin to set the interrupt onTrigger: is the state that will trigger an interrupt
returns: ok | error | {error, Reason}
Convenience function for gpio:set_int/3
This is a convenience function for gpio:set_int/3 that allows an interrupt to be set using only
the pin number and trigger as arguments.
This function should only be used when only one gpio trigger is used in an application. If multiple
pins are being configured with interrupt triggers gpio:set_int/3 should be used otherwise there is
a race condition when start() is called internally by this function.
The rp2040 (Pico) port does not support gpio interrupts at this time.
close/1

GPIO: pid that was returned from gpio:start/0
returns: ok | error | {error, Reason}
Stop the GPIO interrupt port
This function disables any interrupts that are set, stops the listening port, and frees all of its resources.
Not currently available on rp2040 (Pico) port, use nif functions.
deep_sleep_hold_dis/0

returns: ok
Disable all gpio pad functions during Deep-sleep.
This function is only supported on ESP32.
deep_sleep_hold_en/0

returns: ok
Enable all hold functions to continue in deep sleep.
The gpio pad hold function works in both input and output modes, but must be output-capable gpios.
When the chip is in Deep-sleep mode, all digital gpio will hold the state before sleep, and when
the chip is woken up, the status of digital gpio will not be held. Note that the pad hold feature only
works when the chip is in Deep-sleep mode, when not in sleep mode, the digital gpio state can be
changed even you have called this function.
Power down or call gpio_hold_dis will disable this function, otherwise, the digital gpio hold
feature works as long as the chip enters Deep-sleep.
This function is only supported on ESP32.
deinit/1

Pin: number to deinitialize
returns: ok
Reset a pin back to the NULL function. Currently only implemented for RP2040 (Pico).

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 211

detach_interrupt/1

Pin: number of the pin to remove the interrupt
returns: ok | error | {error, Reason}
Convenience function for gpio:remove_int/2
This is a convenience function for gpio:remove_int/2 that allows an interrupt to be removed using
only the pin number as an argument.
Unlike gpio:attach_interrupt/2 this function can be safely used regardless of the number of
interrupt pins used in the application.
The rp2040 (Pico) port does not support gpio interrupts at this time.
digital_read/1

Pin: number of the pin to read
returns: high | low | error | {error, Reason}
Read the digital state of a GPIO pin
Read if an input pin state is high or low. Warning: if the pin was not previously configured as an input
using gpio:set_pin_mode/2 it will always read as low.
The VBUS detect pin on the Pico-W can be read on the extended pin {wl, 2}, and does not require
or accept set_pin_mode or set_pin_pull before use.
digital_write/2

Pin: number of the pin to writeLevel: the desired output level to set
returns: ok | error | {error, Reason}
Set GPIO digital output level
Set a pin to high (1) or low (0).
The STM32 is capable of setting the state for any, or all of the output pins on a single bank at the same
time, this is done by passing a list of pins numbers in the pin tuple. For example, setting all of
the even numbered pins to a high state, and all of the odd numbered pins to a low state can be
accomplished in two lines:

 gpio:digital_write({c, [0,2,4,6,8,10,12,14]}, high}),
 gpio:digital_write({c, [1,3,5,7,9,11,13,15]}, low}).

To set the same state for all of the pins that have been previously configured as outputs on a specific
bank the atom all may be used, this will have no effect on any pins on the same bank that have been
configured as inputs, so it is safe to use with mixed direction modes on a bank.
The LED pin on the Pico-W can be controlled on the extended pin {wl, 0}, and does not require or
accept set_pin_mode or set_pin_pull before use.
hold_dis/1

Pin: number of the pin to be released
returns: ok | error
Release a pin from a hold state.
When the chip is woken up from Deep-sleep, the gpio will be set to the default mode, so, the gpio will
output the default level if this function is called. If you don’t want the level changes, the gpio should
be configured to a known state before this function is called. e.g. If you hold gpio18 high during
Deep-sleep, after the chip is woken up and gpio:hold_dis is called, gpio18 will output low
level(because gpio18 is input mode by default). If you don’t want this behavior, you should configure
gpio18 as output mode and set it to hight level before calling gpio:hold_dis.
This function is only supported on ESP32.

AtomVM documentation, Release 0.6.6+git.db7fa169

212 Chapter 11. API Reference Documentation

hold_en/1

Pin: number of the pin to be held
returns: ok | error
Hold the state of a pin
The gpio pad hold function works in both input and output modes, but must be output-capable gpios.
If pad hold enabled: In output mode: the output level of the pad will be force locked and can not be
changed. In input mode: the input value read will not change, regardless the changes of input signal.
The state of digital gpio cannot be held during Deep-sleep, and it will resume the hold function when
the chip wakes up from Deep-sleep. If the digital gpio also needs to be held during Deep-sleep
gpio:deep_sleep_hold_en should also be called.
This function is only supported on ESP32.
init/1

Pin: number to initialize
returns: ok
Initialize a pin to be used as GPIO. This is required on RP2040 and for some pins on ESP32.
open/0

returns: Pid | error | {error, Reason}
Start the GPIO driver port
The GPIO port driver will be stared and registered as gpio. If the port has already been started
through the gpio:open/0 or gpio:start/0 the command will fail. The use of gpio:open/0 or
gpio:start/0 is required before using any functions that require a GPIO pid as a parameter.
Not currently available on rp2040 (Pico) port, use nif functions.
read/2

GPIO: pid that was returned from gpio:start/0Pin: number of the pin to read
returns: high | low | error | {error, Reason}
Read the digital state of a GPIO pin
Read if an input pin state is high or low. Warning: if the pin was not previously configured as
an input using gpio:set_direction/3 it will always read as low.
Not supported on rp2040 (Pico), use gpio:digital_read/1 instead.
remove_int/2

GPIO: pid that was returned from gpio:start/0Pin: number of the pin to remove the interrupt
returns: ok | error | {error, Reason}
Remove a GPIO interrupt
Removes an interrupt from the specified pin.
The rp2040 (Pico) port does not support gpio interrupts at this time.
set_direction/3

GPIO: pid that was returned from gpio:start/0Pin: number of the pin to configureDirection: is
input, output, or output_od
returns: ok | error | {error, Reason}
Set the operational mode of a pin
Pins can be used for input, output, or output with open drain.
The STM32 platform has extended direction mode configuration options. See @type mode_config() for
details. All configuration must be set using set_direction/3, including pull() mode, unlike

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 213

the ESP32 which has a separate function (set_pin_pull/2). If you are configuring multiple pins on
the same GPIO bank with the same options the pins may be configured all at the same time by giving
a list of pin numbers in the pin tuple.
Example to configure all of the leds on a Nucleo board:

 gpio:set_direction({b, [0,7,14], output)

Not supported on rp2040 (Pico), use gpio:set_pin_mode/2 instead.
set_int/3

GPIO: pid that was returned from gpio:start/0Pin: number of the pin to set the interrupt
onTrigger: is the state that will trigger an interrupt
returns: ok | error | {error, Reason}
Set a GPIO interrupt
Available triggers are none (which is the same as disabling an interrupt), rising, falling, both
(rising or falling), low, and high. When the interrupt is triggered it will send a tuple:
{gpio_interrupt, Pin} to the process that set the interrupt. Pin will be the number of the pin
that triggered the interrupt.
The STM32 port only supports rising, falling, or both.
The rp2040 (Pico) port does not support gpio interrupts at this time.
set_int/4

GPIO: pid that was returned from gpio:start/0Pin: number of the pin to set the interrupt
onTrigger: is the state that will trigger an interruptPid: is the process that will receive the interrupt
message
returns: ok | error | {error, Reason}
Set a GPIO interrupt
Available triggers are none (which is the same as disabling an interrupt), rising, falling, both
(rising or falling), low, and high. When the interrupt is triggered it will send a tuple:
{gpio_interrupt, Pin} to the process that set the interrupt. Pin will be the number of the pin
that triggered the interrupt.
The STM32 port only supports rising, falling, or both.
The rp2040 (Pico) port does not support gpio interrupts at this time.
set_level/3

GPIO: pid that was returned from gpio:start/0Pin: number of the pin to writeLevel: the desired
output level to set
returns: ok | error | {error, Reason}
Set GPIO digital output level
Set a pin to high (1) or low (0).
The STM32 is capable of setting the state for any, or all of the output pins on a single bank at the same
time, this is done by passing a list of pins numbers in the pin tuple.
For example, setting all of the even numbered pins to a high state, and all of the odd numbered pins
to a low state can be accomplished in two lines:

 gpio:digital_write({c, [0,2,4,6,8,10,12,14]}, high}),
 gpio:digital_write({c, [1,3,5,7,9,11,13,15]}, low}).

To set the same state for all of the pins that have been previously configured as outputs on a specific
bank the atom all may be used, this will have no effect on any pins on the same bank that have been
configured as inputs, so it is safe to use with mixed direction modes on a bank.
Not supported on rp2040 (Pico), use gpio:digital_write/2 instead.

AtomVM documentation, Release 0.6.6+git.db7fa169

214 Chapter 11. API Reference Documentation

set_pin_mode/2

Pin: number to set operational modeDirection: is input, output, or output_od
returns: ok | error | {error, Reason}
Set the operational mode of a pin
Pins can be used for input, output, or output with open drain.
The STM32 platform has extended direction mode configuration options. See @type mode_config() for
details. All configuration must be set using set_direction/3, including pull() mode, unlike
the ESP32 which has a separate function (set_pin_pull/2). If you are configuring multiple pins on
the same GPIO bank with the same options the pins may be configured all at the same time by giving
a list of pin numbers in the pin tuple. Example to configure all of the leds on a Nucleo board:

 gpio:set_direction({b, [0,7,14], output)

set_pin_pull/2

Pin: number to set internal resistor directionPull: is the internal resistor state
returns: ok | error
Set the internal resistor of a pin
Pins can be internally pulled up, down, up_down (pulled in both directions), or left floating.
This function is not supported on STM32, the internal resistor must be configured when setting
the direction mode, see set_direction/3 or set_pin_mode/2.
start/0

returns: Pid | error | {error, Reason}
Start the GPIO driver port
Returns the pid of the active GPIO port driver, otherwise the GPIO port driver will be stared and
registered as gpio. The use of gpio:open/0 or gpio:start/0 is required before using any func-
tions that require a GPIO pid as a parameter.
Not currently available on rp2040 (Pico) port, use nif functions.
stop/0

returns: ok | error | {error, Reason}
Stop the GPIO interrupt port
This function disables any interrupts that are set, stops the listening port, and frees all of its resources.
Not currently available on rp2040 (Pico) port, use nif functions.
Module http_server

• Function Index
• Function Details

Function Index

Function Details

parse_query_string/1

parse_query_string(L) -> any()

reply/3

reply(StatusCode, ReplyBody, Conn) -> any()

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 215

reply/4

reply(StatusCode, ReplyBody, ReplyHeaders, Conn) -> any()

start_server/2

start_server(Port, Router) -> any()

Module i2c

• Description
• Data Types
• Function Index
• Function Details

AtomVM I2c interface.
Description

This module provides and interface into the AtomVM I2C driver.
Use this module to communicate with devices connected to your ESP32 device via the 2-wire I2C
interface.
Using this interface, you can read or write data to an I2C device at a given I2C address. In addition,
you may read from or write to specific registers on the I2C device.
Data Types
address()
freq_hz()
i2c()
param()
params()
peripheral()
pin()
register()

Function Index

Function Details

begin_transmission/2

I2C: I2C instance created via open/1Address: I2C Address of the device (typically fixed for
the device type)
returns: ok or {error, Reason}
Begin a transmission of I2C commands
This command is typically followed by one or more calls to write_byte/2 and then a call to
end_transmission/1

close/1

I2C: I2C instance created via open/1
returns: ok atom
Closes the connection to the I2C driver
This function will close the connection to the I2C driver and free any resources in use by it.
end_transmission/1

I2C: I2C instance created via open/1
returns: ok or {error, Reason}

AtomVM documentation, Release 0.6.6+git.db7fa169

216 Chapter 11. API Reference Documentation

End a transmission of I2C commands
This command is typically preceded by a call to begin_transmission/2 and one or more calls to
write_byte/2.
open/1

Param: Initialization parameters
returns: process id of the driver.
Open a connection to the I2C driver
This function will open a connection to the I2C driver.
read_bytes/3

I2C: I2C instance created via open/1Address: I2C Address of the device (typically fixed for
the device type)Count: The number of bytes to read
returns: {ok, Data} which includes the read binary data or {error, Reason}
Read a block of bytes from the I2C device.
This command is not wrapped in a begin_transmission/2 and end_transmission/1 call.
read_bytes/4

I2C: I2C instance created via open/1Address: I2C Address of the device (typically fixed for
the device type)Register: The register address in the device from which to read dataCount:
The number of bytes to read
returns: {ok, Data} which includes the read binary data or {error, Reason}
Read a block of bytes from the I2C device starting at a specified register address
This command is not wrapped in a begin_transmission/2 and end_transmission/1 call.
write_byte/2

I2C: I2C instance created via open/1Byte: value to write
returns: ok or {error, Reason}
Write a byte to the device.
This command must be wrapped in a begin_transmission/2 and end_transmission/1 call.
write_bytes/2

I2C: I2C instance created via open/1Bytes: value to write
returns: ok or {error, Reason}
Write a sequence of bytes to the device.
This command must be wrapped in a begin_transmission/2 and end_transmission/1 call.
write_bytes/3

I2C: I2C instance created via open/1Address: I2C Address of the device (typically fixed for
the device type)BinOrInt: The binary or byte value to write
returns: ok or {error, Reason}
Write a block of bytes to the I2C device.
This command is not wrapped in a begin_transmission/2 and end_transmission/1 call.
write_bytes/4

I2C: I2C instance created via open/1Address: I2C Address of the device (typically fixed for
the device type)Register: The register address in the device to which to write dataBinOrInt:
The binary or byte value to write
returns: ok or {error, Reason}

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 217

Write a block of bytes to the I2C device starting at a specified register address.
This command is not wrapped in a begin_transmission/2 and end_transmission/1 call.
Module json_encoder

• Description
• Function Index
• Function Details

JSON specific APIs.
Description

This module contains functions for working with json data.
Function Index

Function Details

encode/1

Data: data to encode to json
returns: JSON encoded data
Convert data to json encoded binary
Module ledc

• Description
• Data Types
• Function Index
• Function Details

LED Controller low-level APIs.
Description

The functions in this module broadly reflect the ESP IDF-SDK LED Controller API.
See the IDF-SDK LEDC documentation for more information about these APIs.
Data Types
channel()
channel_cfg()
channel_config()
duty()
duty_cfg()
duty_resolution()
duty_resolution_cfg()
fade_mode()
freq_hz()
freq_hz_cfg()
gpio_num()
gpio_num_cfg()
hpoint()
hpoint_cfg()
ledc_error_code()
speed_mode()

Speed modes: use 0 for high speed, 1 for low speed.

AtomVM documentation, Release 0.6.6+git.db7fa169

218 Chapter 11. API Reference Documentation

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/ledc.md

speed_mode_cfg()
timer_config()
timer_num()
timer_num_cfg()
timer_sel()
timer_sel_cfg()

Function Index

Function Details

channel_config/1

Config: channel configuration
returns: ok | {error, ledc_error_code()}
LEDC channel configuration.
Configure LEDC timer with the given source timer/frequency(Hz)/duty_resolution.
fade_func_install/1

Flags: Flags used to allocate the interrupt. One (or multiple, using an ORred mask) ESP_IN-
TR_FLAG_* values. See esp_intr_alloc.h for more info.
returns: ok | {error, ledc_error_code()}
Install LEDC fade function.
This function will occupy interrupt of LEDC module.
fade_func_uninstall/0

returns: ok
Uninstall LEDC fade function.
fade_start/3

SpeedMode: Select the LEDC channel group with specified speed mode. Note that not all targets
support high speed mode.Channel: LEDC channel index (0-7).FadeMode: Whether to block until
fading done.
returns: ok | {error, ledc_error_code()}
Start LEDC fading.
Note. Call ledc:fade_func_install() once before calling this function. Call ledc:fade_start() after this to
start fading.
get_duty/2

SpeedMode: Select the LEDC channel group with specified speed mode. Note that not all targets
support high speed mode.Channel: LEDC channel index (0-7).
returns: ok | {error, ledc_error_code()}
LEDC get duty.
get_freq/2

SpeedMode: Select the LEDC channel group with specified speed mode.TimerNum: LEDC timer
index (0-3).
returns: ok | {error, ledc_error_code()}
LEDC get channel frequency (Hz)
set_duty/3

SpeedMode: Select the LEDC channel group with specified speed mode. Note that not all targets
support high speed mode.Channel: LEDC channel index (0-7).Duty: Set the LEDC duty, the range of

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 219

setting is [0, (2^duty_resolution)-1].
returns: ok | {error, ledc_error_code()}
LEDC set duty.
set_fade_with_step/5

SpeedMode: Select the LEDC channel group with specified speed mode. Note that not all targets
support high speed mode.Channel: LEDC channel index (0-7).TargetDuty: Target duty of fading.
(0..(2^duty_resolution)-1)Scale: Controls the increase or decrease step scale.CycleNum: increase or
decrease the duty every cycle_num cycles
returns: ok | {error, ledc_error_code()}
Set LEDC fade function
Note. Call ledc:fade_func_install() once before calling this function. Call ledc:fade_start() after this to
start fading.
set_fade_with_time/4

SpeedMode: Select the LEDC channel group with specified speed mode. Note that not all targets
support high speed mode.Channel: LEDC channel index (0-7).TargetDuty: Target duty of fading.
(0..(2^duty_resolution)-1)MaxFadeTimeMs: The maximum time of the fading (ms).
returns: ok | {error, ledc_error_code()}
Set LEDC fade function, with a limited time.
Note. Call ledc:fade_func_install() once before calling this function. Call ledc:fade_start() after this to
start fading.
set_freq/3

SpeedMode: Select the LEDC channel group with specified speed mode.TimerNum: LEDC timer
index (0-3).FreqHz: Set the LEDC frequency.
returns: ok | {error, ledc_error_code()}
LEDC set channel frequency (Hz)
stop/3

SpeedMode: Select the LEDC channel group with specified speed mode. Note that not all targets
support high speed mode.Channel: LEDC channel index (0-7).IdleLevel: Set output idle level after
LEDC stops.
returns: ok | {error, ledc_error_code()}
LEDC stop. Disable LEDC output, and set idle level.
timer_config/1

Config: timer configuration
returns: ok | {error, Reason}
LEDC timer configuration.
Configure LEDC timer with the given source timer/frequency(Hz)/duty_resolution.
update_duty/2

SpeedMode: Select the LEDC channel group with specified speed mode. Note that not all targets
support high speed mode.Channel: LEDC channel index (0-7).
returns: ok | {error, ledc_error_code()}
LEDC update channel parameters.
Module network

• Data Types

AtomVM documentation, Release 0.6.6+git.db7fa169

220 Chapter 11. API Reference Documentation

• Function Index
• Function Details

Data Types
ap_channel_cfg()
ap_config()
ap_config_property()
ap_max_connections_config()
ap_ssid_hidden_config()
ap_sta_connected_config()
ap_sta_disconnected_config()
ap_sta_ip_assigned_config()
ap_started_config()
db()
dhcp_hostname_config()
ghz24_channel()

This is the global 2.4 Ghz WiFI channel range, check your local jurisdiction for allowed channels in
your geographic region.
ghz5_160mhz_channel()

This is the global 5 Ghz WiFI channel range when using 160Mhz bandwidth channels, check your
local jurisdiction for allowed channels in your geographic region.
ghz5_20mhz_channel()

This is the global 5 Ghz WiFI channel range when using 20Mhz bandwidth channels, check your local
jurisdiction for allowed channels in your geographic region.
ghz5_40mhz_channel()

This is the global 5 Ghz WiFI channel range when using 40Mhz bandwidth channels, check your local
jurisdiction for allowed channels in your geographic region.
ghz5_80mhz_channel()

This is the global 5 Ghz WiFI channel range when using 80Mhz bandwidth channels, check your local
jurisdiction for allowed channels in your geographic region.
ip_info()
ipv4_address()
ipv4_info()
mac()
network_config()
octet()
psk_config()
sntp_config()
sntp_config_property()
sntp_host_config()
sntp_synchronized_config()
ssid_config()
sta_beacon_timeout_config()
sta_config()
sta_config_property()
sta_connected_config()
sta_disconnected_config()
sta_got_ip_config()
wifi_channel()

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 221

Function Index

Function Details

handle_continue/2

handle_continue(X1, State) -> any()

sta_rssi/0

returns: {ok, Rssi} in decibels, or {error, Reason}.
Get the rssi information of AP to which the device is associated with.
start/1

Config: The network configuration
returns: ok, if the network interface was started, or {error, Reason} if a failure occurred (e.g., due to
malformed network configuration).
Start a network interface.
This function will start a network interface, which will attempt to connect to an AP endpoint in
the background. Specify callback functions to receive definitive information that the connection
succeeded. See the AtomVM Network FSM Programming Manual for more information.
start_link/1

stop/0

returns: ok, if the network interface was stopped, or {error, Reason} if a failure occurred.
Stop a network interface.
wait_for_ap/0

Equivalent to wait_for_ap(15000).
wait_for_ap/1

TimeoutOrApConfig: The AP network configuration or timeout in ms.
Equivalent to wait_for_ap([], Timeout) or wait_for_ap(StaConfig, 15000).
wait_for_ap/2

ApConfig: The AP network configurationTimeout: amount of time in milliseconds to wait for
a connection
returns: ok, when the network has started the AP, or {error, Reason} if a failure occurred (e.g., due to
malformed network configuration).
Start a network interface in access point mode and wait the AP to be up and running
This function will start a network interface in AP mode, and will wait until the network is up and
ready to be connected. This is a convenience function, for applications that do not need to be notified
of connectivity changes in the network.
wait_for_sta/0

Equivalent to wait_for_sta(15000).
wait_for_sta/1

TimeoutOrStaConfig: The STA network configuration or timeout in ms.
Equivalent to wait_for_sta([], Timeout) or wait_for_sta(StaConfig, 15000).
wait_for_sta/2

StaConfig: The STA network configurationTimeout: amount of time in milliseconds to wait for
a connection
returns: {ok, IpInfo}, if the network interface was started, or {error, Reason} if a failure occurred (e.g.,

AtomVM documentation, Release 0.6.6+git.db7fa169

222 Chapter 11. API Reference Documentation

due to malformed network configuration).
Start a network interface in station mode and wait for a connection to be established
This function will start a network interface in station mode, and will wait for a connection to be estab-
lished. This is a convenience function, for applications that do not need to be notified of connectivity
changes in the network.
Module network_fsm

• Description
• Function Index
• Function Details

network_fsm.
Description

This module is depreciated. Use the network module instead.
Function Index

Function Details

start/1

start(Config) -> any()

stop/0

stop() -> any()

wait_for_ap/0

wait_for_ap() -> any()

wait_for_ap/1

wait_for_ap(ApConfig) -> any()

wait_for_ap/2

wait_for_ap(ApConfig, Timeout) -> any()

wait_for_sta/0

wait_for_sta() -> any()

wait_for_sta/1

wait_for_sta(StaConfig) -> any()

wait_for_sta/2

wait_for_sta(StaConfig, Timeout) -> any()

Module pico

• Description
• Function Index
• Function Details

PICO-specific APIs.
Description

This module contains functions that are specific to the PICO platform.
Function Index

Function Details

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 223

cyw43_arch_gpio_get/1

GPIO: pin to read
returns: the level of the GPIO pin
Read a GPIO of the CYW43. This function is only available on Pico-W.
cyw43_arch_gpio_put/2

GPIO: pin to writeLevel: value to write
Write a GPIO of the CYW43. This function is only available on Pico-W. It is typically used to drive
the on-board LED.
rtc_set_datetime/1

Datetime: calendar:datetime() to set rtc clock.
Set the datetime on the RTC. The datetime can be obtained through bif erlang:localtime()
Module port

• Description
• Function Index
• Function Details

AtomVM port driver APIs.
Description

This module contains functions that are intended to be used by drivers that rely on a port interface
rather than nifs.
The port driver should be initialized with: open_port({spawn, "Name"}, Param) Where Name
is an atom(), and is the name of the driver. The return from open_port/2 will be the Pid that will be
required for future port:call/2 or port:call/3 use.
Examples:

 open_port({spawn, "i2c"}, Param)

or

 open_port({spawn, "spi"}, Params)

Function Index

Function Details

call/2

Port: Pid to which to send messagesMessage: the message to send
returns: term() | {error, Reason}.
Send a message to a given port driver pid.
This function is used to send a message to an open port divers pid and will return a term or {error,
Reason}.
call/3

Port: Pid to which to send messagesMessage: the message to sendTimeout: the timeout value in
milliseconds
returns: term() | {error, Reason}.
Send a message to a given port driver pid with a timeout.
This function is used to send a message to an open port divers pid and will return a term or {error,

AtomVM documentation, Release 0.6.6+git.db7fa169

224 Chapter 11. API Reference Documentation

Reason}, or{error, timeout} if the TimeoutMs is reached first.
Module spi

• Description
• Data Types
• Function Index
• Function Details

This module provides an interface into the Serial Peripheral Interface (SPI) supported on many
devices.
Description

This module currently support the SPI “leader” (historically known as the “master”) interface,
allowing the leader to connect to one or more “follower” (historically known as “slave”) devices.
Users interact with this interface by creating an instance of the driver via the open/1 function, with
returns an opaque reference to the driver instance. The open/1 function takes a complex map struc-
ture, which configures the driver to connect to follower devices. See the open/1 documentation for
details about the structure of this configuration map.
Subsequent read and write operations use the SPI instance returned from the open/1 function. Users
may read from a specific follower device at a specific address, write to the device at an address, or
simultaneously read from and write to the device in a single transaction.
Data Types
address()
bus_config()
device_config()
device_name()
params()
peripheral()
spi()
transaction()

Function Index

Function Details

close/1

SPI: SPI instance created via open/1
Close the SPI driver.
Close the SPI driver and free any resources in use by the driver.
The SPI instance will no longer be valid and usable after this function has been called.
open/1

Params: Initialization parameters
returns: process id of the driver.
throws badarg
Open a connection to the SPI driver
This function will open a connection to the SPI driver.
Supply a set of parameters to initialize the driver.
The parameters list must contain an SPI Bus configuration, together with a properties list containing
one or more device configurations. This list must contain atom keys as names, which are used to
identify the device in the subsequent read and write operations. You may use any atom value of your

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 225

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface

choosing.
The SPI Bus configuration is a properties list containing the following entries:
Each device configuration is a properties list containing the following entries:
Example:

 Params = [
 {bus_config, [
 {miso, 16},
 {mosi, 17},
 {sclk, 5}
 },
 {device_config, [
 {device1, [
 {cs, 18}
]},
 {device2, [
 {cs, 19}
]}
]}
]

Note that device1 and device2 are atom names used to identify the device for read and write oper-
ations.
This function raises an Erlang exception with a badarg reason, if initialization of the SPI Bus or any
device fails.
The write/3 and write_read/3 functions in this module are designed to provide the maximum
mount of flexibility when interfacing with the SPI device. The both make use of a map structure to
encapsulate an SPI transaction.
An SPI transaction may contain a command, and address, and/or a blob of data, each of which is
optional and each of which depends on how users interact with the device. Consult the data sheet for
your SPI device to understand which fields should be used with your device.
The fields of a transaction map are as follows:
read_at/4

SPI: SPI instance created via open/1DeviceName: device name from configurationAddress: SPI
Address from which to readLen: in bytes to read
returns: {ok, Value} or error
Read a value from and address on the device.
write/3

SPI: SPI instance created via open/1DeviceName: SPI device name (use key in
device_config)Transaction: transaction map.
returns: ok or {error, Reason}, if an error occurred.
Write data to the SPI device, using the instructions encoded in the supplied transaction.
The supplied Transaction encodes information about how data is to be written to the selected SPI
device. See the description above for the fields that may be specified in this map.
When a binary is supplied in the write_data field, the data is written to the SPI device in
the natural order of the binary. For example, if the input binary is <<16#57, 16#BA>>, then the first
byte is 0x57 and the second byte is 0xBA.
The value of the write_bits field, if specified, must be less than or equal to 8 *
byte_size(write_data). If write_bits is less than 8 * byte_size(write_data), only
the first write_bits bits from write_data will be written.
This function will return a tuple containing the error atom if an error occurred writing to the SPI

AtomVM documentation, Release 0.6.6+git.db7fa169

226 Chapter 11. API Reference Documentation

device at the specified address. The returned reason term is implementation-defined.
write_at/5

SPI: SPI instance created via open/1DeviceName: device name from configurationAddress: SPI
Address to which to writeLen: in bytes to readData: byte(s) to write
returns: {ok, Value} or error
Write a value to and address on the device.
The value returned from this function is dependent on the device and address. Consult the documen-
tation for the device to understand expected return values from this function.
write_read/3

SPI: SPI instance created via open/1DeviceName: SPI device name (use key in
device_config)Transaction: transaction.
returns: {ok, binary()} or {error, Reason}, if an error occurred.
Write data to the SPI device, using the instructions encoded in the supplied transaction. device, and
simultaneously read data back from the device, returning the read data in a binary.
The supplied Transaction encodes information about how data is to be written to the selected SPI
device. See the description above for the fields that may be specified in this map.
When a binary is supplied in the write_data field, the data is written to the SPI device in
the natural order of the binary. For example, if the input binary is <<16#57, 16#BA>>, then the first
byte is 0x57 and the second byte is 0xBA.
The value of the write_bits field, if specified, must be less than or equal to 8 *
byte_size(write_data). If write_bits is less than 8 * byte_size(write_data), only
the first write_bits bits from write_data will be written.
The return value contains a sequence of bytes that have been read from the SPI device. The number of
bytes returned will be ceil(read_bits / 8). Only the first read_bits will be populated.
This function will return a tuple containing the error atom if an error occurred writing to the SPI
device at the specified address. The returned reason term is implementation-defined.
Module timestamp_util

• Description
• Data Types
• Function Index
• Function Details

Utility functions for comparing timestamps.
Description

This module contains functions that are useful for comparing timestamps without running the risk of
integer overflow.
Note that the functions in this module may be obsoleted in future versions of AtomVM, as support for
arbitrary sized integers is added; however, the functions may still be useful in their own right.
Data Types
megasecs()
microsecs()
secs()
timestamp()

Function Index

Function Details

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 227

delta/2

TS2: a timestampTS1: a timestamp
returns: TS2 - TS1, as a timestamp
Computes the difference between TS2 and TS1, as a timestamp.
delta_ms/2

TS2: a timestampTS1: a timestamp
returns: TS2 - TS1, in milliseconds
Computes the difference between TS2 and TS1, in milliseconds.
Module uart

• Data Types
• Function Index
• Function Details

Data Types
peripheral()

The peripheral Name may be one of: "UART0" | "UART1" | "UART2" | <<"UART0">> |
<<"UART1">> | <<"UART2">>.
uart_opts()

Function Index

Function Details

close/1

Pid: of the uart port to be closed
returns: ok.
Close a port connection to the UART driver
This function will close the given port connection to the UART driver.
open/1

Opts: uart configuration options
returns: Pid of the driver.
Open a connection to the UART driver default port
This function will open a connection to the UART driver.
open/2

Name: the uart peripheral to be openedOpts: uart configuration options
returns: Pid of the driver.
Open a connection to the UART driver
This function will open a connection to the UART driver.
read/1

Pid: of the uart port to be read
returns: {ok, Data} or {error, Reason}
Read data from a UART port
This function will return any data that is available, or return a {error, timeout} tuple. The driver
will sent the next available data from the UART driver to the process that made the last read. Exam-

AtomVM documentation, Release 0.6.6+git.db7fa169

228 Chapter 11. API Reference Documentation

ple:Example:

 Data = case uart:read(Uart) of
 {ok, Binary} -> Binary;
 {error, timeout} ->
 receive
 {ok, RecvBinary} -> RecvBinary;
 Error -> error(Error)
 end;
 Error -> error(Error)
 end,

Any attempt by another (or the same process) to read from uart before the next uart payload is sent by
the driver will result in {error, ealready}.
read/2

Pid: of the uart port to be readTimeout: millisecond to wait for data to become available
returns: {ok, Data}, or {error, Reason}
Read data from a UART port
This function will return any data that is available within the timeout period to the process. After
the timeout has expired a new read command may be used regardless of whether the last read was
sent a payload. Example:

 Data = case uart:read(Uart, 3000) of
 {ok, Bin} -> Bin;
 {error, timeout} -> <<"">>;
 Error -> error_handler_fun(Uart, Error)
 end,

Any data sent to the esp32 over uart between reads with a timeout will be lost, so be sure this is what
you want. Most applications will want a single process to read from UART and continue to listen until
a payload is received, and likely pass the payload off for processing and immediately begin another
read.
write/2

Pid: of the uart port to be written toData: to be written to the given uart port
returns: ok or {error, Reason}
Write data to a UART port
This function will write the given data to the UART port.

11.1.3 alisp

The alisp library
Modules

Module alisp

• Function Index
• Function Details

Function Index

Function Details

booleanize/1

booleanize(V) -> any()

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 229

eval/1

eval(S) -> any()

run/1

run(S) -> any()

Module alisp_stdlib

• Function Index
• Function Details

Function Index

Function Details

‘*’/1

*(L) -> any()

‘+’/1

+(L) -> any()

‘-‘/1

-(T) -> any()

‘=’/1

=(T) -> any()

‘remove-if’/1

remove-if(X1) -> any()

‘remove-if-not’/1

remove-if-not(X1) -> any()

append/1

append(X1) -> any()

binaryp/1

binaryp(X1) -> any()

car/1

car(X1) -> any()

cdr/1

cdr(X1) -> any()

cons/1

cons(X1) -> any()

floatp/1

floatp(X1) -> any()

identity/1

identity(X1) -> any()

integerp/1

integerp(X1) -> any()

AtomVM documentation, Release 0.6.6+git.db7fa169

230 Chapter 11. API Reference Documentation

last/1

last(X1) -> any()

list/1

list(List) -> any()

listp/1

listp(X1) -> any()

mapcar/1

mapcar(X1) -> any()

numberp/1

numberp(X1) -> any()

pidp/1

pidp(X1) -> any()

print/1

print(X1) -> any()

refp/1

refp(X1) -> any()

tuple/1

tuple(List) -> any()

tuplep/1

tuplep(X1) -> any()

Module arepl

• Function Index
• Function Details

Function Index

Function Details

start/0

start() -> any()

Module sexp_lexer

• Function Index
• Function Details

Function Index

Function Details

string/1

string(Bin) -> any()

Module sexp_parser

• Function Index
• Function Details

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.1. Erlang Libraries 231

Function Index

Function Details

parse/1

parse(T) -> any()

Module sexp_serializer

• Function Index
• Function Details

Function Index

Function Details

serialize/1

serialize(Value) -> any()

11.1.4 etest

The etest library
Modules

Module etest

• Description
• Function Index
• Function Details

This modules provides a basic testing framework for AtomVM Erlang libraries.
Function Index

Function Details

assert_equals/2

X: a termY: a term
returns: ok if X and Y are equal; fail otherwise.
assert_exception/1

F: a function to evaluate
returns: ok if evaluating F results in Error being raised; fail, otherwise
assert_exception/2

F: a function to evaluateClass: expected exception class
returns: ok if evaluating F results in an exception of class Class being raised; fail, otherwise
assert_exception/3

F: a function to evaluateClass: expected exception classE: expected exception value
returns: ok if evaluating F results in an exception of class Class and of value E being raised; fail, other-
wise
assert_match/2

X: a termY: a term
returns: ok if X and Y unify; fail otherwise.

AtomVM documentation, Release 0.6.6+git.db7fa169

232 Chapter 11. API Reference Documentation

assert_true/1

X: a term
returns: ok if X is true; fail otherwise.
flush_msg_queue/0

returns: ok after flushing all messages in the process message queue
Use optionally to flush messages in test cases that run in a single test module
test/1

Tests: a list of test modules
returns: ok if all of the tests pass, or the atom fail, if any of the tests failed.
Test a sequence of test modules.
This function will execute the test/0 function for each module provided in the input list of test
modules. If all of the tests return the atom ok, then this function returns ok. If any of the test
modules return a value other than ok, then this function returns the atom fail.

11.2 AtomVM ‘C’ APIs

 AtomVM documentation, Release 0.6.6+git.db7fa169

11.2. AtomVM ‘C’ APIs 233

12 Contributing

AtomVM is open to any contribution.
Pull requests, bug reports and feature requests are welcome.
However before contributing, please read carefully our Code of Conduct and the following contribu-
tion guidelines.
Please, also make sure to understand the Apache 2.0 license and the Developer Certificate of Origin.
Last but not least, do not use GitHub issues for vulnerability reports, read instead the security
policy for instructions.

12.1 Git Recommended Practices

• Commit messages should have a
• summary and a description
• Remove any trailing white spaces
• Always git pull --rebase
• Clean up your branch history with git rebase -i
• Squash commits before PR, unless there is a good reason not to
• All your intermediate commits should build

12.2 Coding Style

For all source code modules:
• Remove all trailing whitespace
• Newlines (\n) at end of file
• Use line ending conventions appropriate for the platform (e.g., \n on UNIX-like systems)

12.2.1 Copyright Headers

All source code modules should include copyright headers that are formatted for the relevant module
language. Copyright headers should take the following form:

/*
* This file is part of AtomVM.
*
* Copyright 2020 Your name <your@email.address>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and

AtomVM documentation, Release 0.6.6+git.db7fa169

234 Chapter 12. Contributing

https://github.com/atomvm/AtomVM/pulls
https://github.com/atomvm/AtomVM/issues
https://developercertificate.org/
https://github.com/erlang/otp/wiki/writing-good-commit-messages
https://git-scm.com/book/id/v2/Git-Tools-Rewriting-History

* limitations under the License.
*
* SPDX-License-Identifier: Apache-2.0 OR LGPL-2.1-or-later
*/

12.2.2 C Code

C source code style is enforced with clang-format-16. To automatically fix a file, run:

clang-format-16 --style=file -i file.c

Indentation

• K&R indentation and braces style
• Mandatory braces
• 4 space indentation (no tabs)

Good:

void f(bool reverse)
{
 if (reverse) {
 puts("!dlroW olleH");
 } else {
 puts("Hello world");
 }
}

Bad:

void f(bool reverse) {
 if (reverse)
 puts ("!dlroW olleH");
 else
 puts ("Hello world");
}

Naming Conventions

• Struct names are PascalCase (e.g. Context)
• Scalar types are lower case (e.g. term)
• All other names (e.g. functions and variables) are snake_case (e.g. term_is_integer)
• Always prefix exported function names with the module in which they are defined (e.g.
term_is_nil, term_is_integer, context_new, context_destroy)

Other Coding Conventions

• Pointers (*) should be with the variable name rather than with the type (e.g. char *name, not
char* name)

• Avoid long lines, use intermediate variables with meaningful names.
• Function definitions should be separated by 1 empty line

Function declarations should be structured as follows:

func(main_input, additional_inputs, main_output, additional_outputs, opts,
 [context])

 AtomVM documentation, Release 0.6.6+git.db7fa169

12.2. Coding Style 235

https://releases.llvm.org/16.0.0/tools/clang/docs/ClangFormat.html
https://en.wikipedia.org/wiki/Indentation_style#K&R_style
https://en.wikipedia.org/wiki/Indentation_style#Variant:_mandatory_braces

where context is a context structure (such as Context or GlobalContext).
Any functions that are not exported should be qualified with the static keyword.
Functions that return booleans should be named is_something (or possibly
module_is_something, if the function is exported).
C header modules (.h) should be organized as follows:

+-------------------
| Copyright Header
|
| #ifdef MODULE__H__
| #define MODULE__H__
|
| #ifdef __cplusplus
| extern "C" {
| #endif
|
| #includes (alphabetical)
|
| #defines
|
| type definitions
|
| function declarations
|
| #ifdef __cplusplus
| }
| #endif
|
| #endif
+-------------------
 module.h

C source modules (.c) should be organized as follows:

+-------------------
| Copyright Header
|
| #includes (alphabetical)
|
| #defines
|
| type definitions
|
| forward declarations (only if necessary)
|
| function definitions
| dependent static functions first
| exported functions and entrypoints last
+-------------------
 module.c

Documentation

Doxygen Javadoc style code comments will be picked up and added to the documentation. Changes
will automatically be added to the libAtomVM Source Files and the libAtomVM Index. But to have
Data Structures, Types, MACROS, and Functions appear in the correct C Library APIs section
the corresponding entries must be added to the similarly named *.rst files in the AtomVM/doc/src
/apidocs/libatomvm/ directory. The exact names of the files that need to be altered are:
data_structures.rst, functions.rst, macros.rst, and types.rst. The other files in
the directory handle auto`generated content and do not need to be altered.
In the rare case that a function declaration and definition are both in different header files (rather than

AtomVM documentation, Release 0.6.6+git.db7fa169

236 Chapter 12. Contributing

https://www.doxygen.nl/manual/docblocks.html
https://doc.atomvm.org/release-0.6/apidocs/libatomvm/index.html#libatomvm-source-files
https://doc.atomvm.org/release-0.6/apidocs/libatomvm/index.html#libatomvm-index

the definition in a *.c file) this can cause rendering errors for Doxygen. The work around for these
cases can be demonstrated with this example for the function sys_listener_destroy it is docu-
mented and declared in sys.h and defined as follows in listeners.h:

#ifndef DOXYGEN_SKIP_SECTION /* documented in sys.h */
void sys_listener_destroy(struct ListHead *item)
{
 EventListener *listener = GET_LIST_ENTRY(item, EventListener,
 listeners_list_head);
 free(listener);
}
#endif /* DOXYGEN_SKIP_SECTION */

Note: You should include a short /* comment */ trailing the #ifndef entry mentioning
the file where the function is actually documented.

12.2.3 Erlang Code

Erlang source code style is enforced using erlfmt.

12.2.4 Elixir Code

Just use Elixir formatter enforced style.

 AtomVM documentation, Release 0.6.6+git.db7fa169

12.2. Coding Style 237

https://github.com/WhatsApp/erlfmt

13 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

13.1 [0.6.6] - Unreleased

13.1.1 Added

• Added the ability to run beams from the CLI for Generic Unix platform (it was already possible
with nodejs and emscripten)

• Added preliminary support for ESP32P4 (no networking support yet).
• Added memory info in out_of_memory crash logs to help developers fix memory issues.
• Added documentation and function specs for uart driver
• Added uart:read/2 with a timeout parameter.
• Missing erlang:is_function/2 BIF
• Added erlang:is_record/2
• Added ability to set per-interface dhcp_hostname on Pico W if present in config.

13.1.2 Fixed

• Fixed specifications of nifs from esp_adc module
• ESP32: fix gpio:init/1 on GPIO >= 32
• Adding missing check, passing a non numeric argument to a function expecting a floating point

might lead to a crash in certain situations.
• Fixed several bugs in http_server (#1366)
• Fixed generic_unix socket_driver to return {gen_tcp, closed} when socket is closed on

Linux instead of {gen_tcp, {recv, 104}}
• Fixed a memory leak where modules were not properly destroyed when the global context is

destroyd
• alisp: fix support to variables that are not binaries or integers.
• Fixed destruction of ssl-related resources
• Fixed corruption when dealing with specific situations that involve more than 16 x registers

when certain VM instructions are used.
• Fixed ESP32 GPIO interrupt trigger none
• Fixed an issue where a timeout would occur immediately in a race condition
• Fixed SPI close command
• Added missing lock on socket structure
• Fixed a race condition affecting multi-core MCUs where a timeout would not be properly cleared
• Fixed a double free when esp32 uart driver was closed, yielding an assert abort
• Fixed compilation with latest debian gcc-arm-none-eabi
• Fixed network:stop/0 on ESP32 so the network can be started again
• Fixed a memory corruption caused by binary:split/2,3

AtomVM documentation, Release 0.6.6+git.db7fa169

238 Chapter 13. Changelog

https://keepachangelog.com/en/1.0.0/
https://semver.org/spec/v2.0.0.html

• Fixed deadlock in socket code
• Fixed bug in opcode implementation (select_val): when selecting a value among many others

a shallow comparison was performed, so it was working just for plain values such as atoms and
small integers

• Fixed support for setting esp32 boot_path in NVS.
• Fixed race conditions in network:start/stop.
• Fixed crash calling network:sta_rssi(), when network not up.
• Fixed error handling when calling min and max with code compiled before OTP-26: there was

a bug when handling errors from BIFs used as NIFs (when called with CALL_EXT and similar
opcodes)

• Fixed matching of binaries on unaligned boundaries for code compiled with older versions of
OTP

• Added missing out of memory handling in binary_to_atom
• Fixed call to funs such as fun erlang:’not’/1, that make use of BIFs
• Fixed potential crashes or memory leaks caused by a mistake in calculation of reference counts

and a race condition in otp_socket code
• Fixed an out of memory issue by forcing GC to copy data from message fragments
• Fixed a bug where calling repeatedly process_info on a stopped process could cause an out

of memory error
• Fixed possible concurrency problems in ESP32 UART driver
• Fixed concurrency and memory leak related to links and monitors
• Fixed issues with parsing of line references for stack traces
• Fixed memory corruption issue with erlang:make_tuple/2
• Fix potential use after free with code generated from OTP <= 24
• Fix is_function/2 guard
• Fixed segfault when calling lists:reverse/1 (#1600)
• Fixed nif_atomvm_posix_read GC bug
• Fixed erlang:is_number/1 function, now returns true also for floats
• Fixed unlink protocol and add support for link/1 on ports
• Do not abort when an out of memory happens while loading a literal value
• Fixed potential memory corruption when handling integer immediates that are stored as boxed

integer (this never happens with integers < 28 bits)
• Correctly set Pico-W unique dhcp hostname when using the default, previously all rp2040

devices used the same “PicoW” dhcp hostname, causing collisions when multiple rp2040 are on
the same network. (See issue #1094)

13.1.3 Changed

• ESP32 UART driver no longer aborts because of badargs in configuration, instead raising
an error

• ESP32: v0.6.6 uses esp-idf v5.4.1 for pre-built images and v5.4.x is the suggested release also
for custom builds

 AtomVM documentation, Release 0.6.6+git.db7fa169

13.2. [0.6.5] - 2024-10-15 239

13.2 [0.6.5] - 2024-10-15

13.2.1 Added

• ESP32: add a new Elixir release “flavor” with a bigger boot.avm partition that has room for Elixir
standard library modules

• ESP32: --boot option to mkimage.sh tool
• Add erlang:atom_to_binary/1 that is equivalent to erlang:atom_to_binary(Atom,
utf8)

• Support for Elixir String.Chars protocol, now functions such as Enum.join are able to take
also non string parameters (e.g. Enum.join([1, 2], ",")

• Support for Elixir Enum.at/3
• Add support for is_bitstring/1 construct which is used in Elixir protocols runtime.
• Add support to Elixir Enumerable protocol also for Enum.all?, Enum.any?, Enum.each,
Enum.filter, Enum.flat_map, Enum.reject, Enum.chunk_by and Enum.chunk_while

• Support for maps:merge_with/3
• Support for lists:last/1 and lists:mapfoldl/3
• Add support to Elixir for Process.send/2 Process.send_after/3/4 and
Process.cancel_timer/1

• Add support for handle_continue callback in gen_server
• Support for Elixir List.Chars protocol
• Support for gen_server:start_monitor/3,4
• Support for code:ensure_loaded/1
• Support for io_lib:latin1_char_list/1
• Add support to Elixir for Keyword.split/2
• Support for binary:split/3 and string:find/2,3
• Support for large tuples (more than 255 elements) in external terms.
• Support for io:put_chars/2
• Support for lists:nthtail/2
• Support for Elixir IO.chardata_to_string/1
• Support for Elixir List.duplicate/2
• Support for binary:copy/1,2
• Support for directory listing using POSIX APIs: (atomvm:posix_opendir/1,
atomvm:posix_readdir/1, atomvm:posix_closedir/1).

• ESP32: add support for esp_adc ADC driver, with Erlang and Elixir examples
• Add handler for ESP32 network driver STA mode beacon_timeout (event: 21), see issue #1100
• Support for mounting/unmounting storage on ESP32 (such as SD or internal flash) using
esp:mount/4 and esp:umount/1

• Support for binary_to_integer/2
• Support for binary:decode_hex/1 and binary:encode_hex/1,2
• Support for Elixir Base.decode16/2 and Base.encode16/2
• Make external term serialize functions available without using externalterm_to_binary so

AtomVM documentation, Release 0.6.6+git.db7fa169

240 Chapter 13. Changelog

https://github.com/atomvm/AtomVM/issues/1100

terms can be written directly to a buffer.
• Support for erlang:list_to_integer/2
• Add externalterm_to_term_copy that can be safely used from NIFs taking temporary

buffers

13.2.2 Changed

• ESP32: Elixir library is not shipped anymore with esp32boot.avm. Use
elixir_esp32boot.avm instead

• Enum.find_index and Enum.find_value support Enumerable and not just lists
• Install AtomVM libraries source code and binaries for better dialyzer integration
• Made the device_config properties list in spi:open/1 optional (defaults to []), so you can

use the function with only a bus_config

13.2.3 Fixed

• ESP32: content of boot.avm partition is not truncated anymore
• ESP32: Fixed gpio:set_int to accept any pin, not only pin 2
• Fix memory corruption in unicode:characters_to_binary
• Fix handling of large literal indexes and large extended literal indexes
• unicode:characters_to_list: fixed bogus out_of_memory error on some platforms such

as ESP32
• Fix crash in Elixir library when doing inspect(:atom)
• General inspect() compliance with Elixir behavior (but there are still some minor differences)
• Fix several uses of free on prevously released memory on ESP32, under certain error condition

using network:start/1, that would lead to a hard crash of the VM.
• Fix a bug in ESP32 network driver where the low level driver was not being stopped and

resoureces were not freed when network:stop/0 was used, see issue #643
• uart:open/1,2 now works with uppercase peripheral names

13.3 [0.6.4] - 2024-08-18

13.3.1 Added

• Implement gpio:init/1 on esp32 to initialize pins for GPIO usage, which some pins require
depending on default function and bootloader code

• Implement missing opcode 161 (raw_raise), that looks more likely to be generated with Elixir
code

• Support for Elixir Map.replace/3 and Map.replace!/3
• Support for Elixir Kernel.struct and Kernel.struct!
• Support for Elixir IO.iodata_to_binary/1
• Support for Elixir exceptions: Exception module and the other error related modules such as
ArgumentError, UndefinedFunctionError, etc…

• Support for Elixir Enumerable and Collectable protocol
• Support for Elixir Enum functions: split_with, join, map_join, into, reverse, slice and

 AtomVM documentation, Release 0.6.6+git.db7fa169

13.3. [0.6.4] - 2024-08-18 241

https://github.com/atomvm/AtomVM/issues/643

to_list

• Support for Elixir MapSet module
• Support for Elixir Range module
• Support for Elixir Kernel.min and Kernel.max
• Support (as stub) for erlang:error/3 (that is required from Elixir code)

13.4 [0.6.3] - 2024-07-20

13.4.1 Added

• Simple http client, that can be used for different use case such as downloading OTA updates
• Elixir support for Keyword.merge Keyword.take Keyword.pop(!) Keyword.keyword?
Keyword.has_key? functions.

• Support for ESP32-H2
• lists:keytake/3 implemented.
• Support for setting channel used by network driver wifi access point.
• Support for maps:iterator/2 and ~kp with io_lib:format/2 that were introduced with

OTP26.
• Support for erlang:apply/2
• Support for lists:keystore/4
• Support for erlang:size/1 bif
• Support for USB serial output on ESP32 (needs to be manually enabled)
• Support for lists:filtermap/2
• Support for standard library queue module
• Support for maps:from_keys/2 NIF
• Support for standard library sets module

13.4.2 Changed

• ESP32 network driver messages for event 40 (home channel change events) are now suppressed,
but the details for the channel changes can be observed in the console log if “debug” level
logging is enabled in ESP-IDF Kconfig options.

• Default size of ESP32 RTC slow memory from 4086 to 4096, except on ESP32-H2 where it’s 3072
• Update byte_size/1 and bit_size/1 to implement OTP27 match context reuse optimization

OTP-18987.

13.4.3 Fixed

• Fix bug (with code compiled with OTP-21) with binary pattern matching: the fix introduced
with 02411048 was not completely right, and it was converting match context to bogus binaries.

• Fix creation of multiple links for the same process and not removing link at trapped exits. See
issue #1193.

• Fix error that is raised when a function is undefined
• Fix a bug that could yield crashes when functions are sent in messages

AtomVM documentation, Release 0.6.6+git.db7fa169

242 Chapter 13. Changelog

https://github.com/atomvm/AtomVM/issues/1193

• Fix bug where failing guards would corrupt x0 and x1
• Fix a memory leak when raising out of memory error while executing PUT_MAP_ASSOC

instruction

13.5 [0.6.2] - 25-05-2024

13.5.1 Added

• Support for DragonFly BSD (generic_unix platform).
• Added guards is_even and is_odd to the Integer module
• Add a number of functions to proplists module, such as delete/2, from/to_map/1, etc…
• Add esp:deep_sleep_enable_gpio_wakeup/2 to allow wakeup from deep sleep for

ESP32C3 and ESP32C6.
• Obtain RSSI of the current connection with network:sta_rssi/0 on ESP32.
• Pico-W support for network:sta_rssi/0.
• Add support to ESP32C2

13.5.2 Fixed

• Fix invalid read after free in ssl code, see also issue #1115.
• Fix semantic of ssl:recv(Socket, 0) to return all available bytes, matching what OTP does.
• Fix binary option handling in ssl:connect/3 so binary can be used instead of {binary,
true}.

• Fix scheduling of trapped process that were wrongly immediately rescheduled before being
signaled.

• Fix gen_tcp and ssl types.
• Fix documentation and specification of esp:sleep_enable_ext0_wakeup/2 and
esp:sleep_enable_ext1_wakeup/2.

13.5.3 Changed

• Stacktraces are included by default on Pico devices.
• Changed ssl default from {active, false} to {active, true} in order to have same

behavior as OTP. Since active mode is not supported right now, active must be explicitly set to
false: ssl:connect(..., ..., [{active, false}, ...]), otherwise it will crash.

13.6 [0.6.1] - 2024-04-17

13.6.1 Added

• Added experimental optimized GC mode that makes use of C realloc instead of copying data
around, it can be enabled with -DENABLE_REALLOC_GC=On.

 AtomVM documentation, Release 0.6.6+git.db7fa169

13.5. [0.6.2] - 25-05-2024 243

https://github.com/atomvm/AtomVM/issues/1115

13.6.2 Fixed

• Fix bug in erlang:ref_to_list/1 and erlang:display/1: the unique integer was trun-
cated on some 32-bit architectures

• Stop hardcoding erl_eval as module name in both display and fun_to_list
• Correctly display and convert to list funs such as fun m:f/a
• Fixed bug in STM32 cmake that could cause builds with multiple jobs to fail due to incorrect arti-

fact dependency
• Fix crash on macOS due to missing call to psa_crypto_init for TLS 1.3
• Fix crypto test on rp2040

13.7 [0.6.0] - 2024-03-05

13.7.1 Fixed

• Fix a bug that broke sockets on ESP32-C3 and other single core ESP32 devices, that may also
cause other issues. The bug has been introduced with messages from tasks change between
beta.1 and rc.0

• Fixed several issues related to Esp32 socket_driver that made it unreliable, especially with single
core MCUs

13.8 [0.6.0-rc.0] - 2024-03-03

13.8.1 Added

• BOOTLOADER_OFFSET for all current Esp32 models.
• Added API to send messages from FreeRTOS tasks or pthreads, typically to easily support inte-

gration with Esp32 callbacks

13.8.2 Fixed

• BOOTLOADER_OFFSET was incorrect for Esp32-C6 and Esp32-S2.
• Fixed a bug that would fail to set DHCP hostname in STA+AP mode on all ESP32 platforms.
• ESP32-S3: crash in network driver caused by a smaller stack size for scheduler threads, when

calling esp_wifi_init(). See also issue #1059.
• Fixed Esp32 network driver on non-SMP builds
• ESP32: fixed bug in gpio:stop/0 and gpio:close/1 that would cause the VM to crash.

13.9 [0.6.0-beta.1] - 2024-02-28

13.9.1 Added

• Support for utf8 encoding to *_to_atom and atom_to_* functions

AtomVM documentation, Release 0.6.6+git.db7fa169

244 Chapter 13. Changelog

https://github.com/atomvm/AtomVM/issues/1059

• binary_to_atom/1 and atom_to_binary/1 that default to utf8 (they were introduced with
OTP23)

• Added Pico cmake option AVM_WAIT_BOOTSEL_ON_EXIT (default ON) to allow tools to use
automated BOOTSEL mode after main application exits

• Use UTF-8 encoding for atoms when using erlang:term_to_binary/1, in conformance with
OTP-26

• Pico: Wait for USB serial connection cmake configuration option AVM_USB_WAIT_SECONDS
added with 20 second default.

• Support for code that makes use of more than 16 live registers, such as functions with > 16
parameters and complex pattern matchings.

13.9.2 Fixed

• ESP32: fix i2c_driver_acquire and i2c_driver_release functions, that were working only once.
• Sending messages to registered processes using the ! operator now works.
• Fixed bug in OP_SEND that would accept sending a message to any integer or term without

raising an error.
• binary_to_term checks atom encoding validity, and fix latin1 support (when non-ASCII chars

are used)
• ESP32: fixed bug in gpio:set_pin_mode/2 and gpio:set_direction/3 that would accept

any atom for the mode parameter without an error.
• ESP32: GPIO driver fix bug that would accept invalid pull direction, and silently set pull

direction to floating without issuing an error.
• ESP32: fixed bug in gpio driver that would accept invalid pin numbers (either negative, or too

large)
• RP2040: fixed bug in gpio:set_pin_pull/2 that would accept any parameter as a valid pull

mode.
• Support to function with 10 or more parameters
• Very unlikely but possible corruption caused by generated code that uses 16 live registers

13.9.3 Changed

• binary_to_atom/2 validates utf8 strings
• *_to_atom and atom_to_* properly convert latin1 (not just ASCII) to utf8 and viceversa
• ESP32: use esp-idf v5.1.3 for building release binaries

13.10 [0.6.0-beta.0] - 2024-02-08

13.10.1 Added

• Added esp:get_default_mac/0 for retrieving the default MAC address on ESP32.
• Added support for pico and poci as an alternative to mosi and miso for SPI
• ESP32: Added support to SPI peripherals other than hspi and vspi
• Added gpio:set_int/4, with the 4th parameter being the pid() or registered name of

the process to receive interrupt messages
• Added support for lists:split/2

 AtomVM documentation, Release 0.6.6+git.db7fa169

13.10. [0.6.0-beta.0] - 2024-02-08 245

• Added ESP32 API for allowing coexistence of native and Erlang I2C drivers

13.10.2 Changed

• Shorten SPI config options, such as sclk_io_num -> sclk
• Shorten I2C config options, such as scl_io_num -> scl
• Shorten UART config options, such as tx_pin -> tx
• Introduced support to non-integer peripheral names, "i2c0", "uart1" (instead of just 0 and
• 1, which now they are deprecated)
• New atom table, which uses less memory, has improved performances and better code.
• SPI: when gpio number is not provided for miso or mosi default to disabled
• Change port call tuple format to the same format as gen_server, so casts can be supported too

13.10.3 Fixed

• Fix several missing memory allocation checks in libAtomVM.
• Fixed a possible memory leak in libAtomVM/module.c module_destroy.
• Fix possibile bug in random number generator on ESP32 and RPi2040
• Fixed interpretation of live for opcodes, thus altering GC semantics for nifs. See also UPDATING.

13.11 [0.6.0-alpha.2] - 2023-12-10

13.11.1 Fixed

• Fixed a bug where guards would raise exceptions instead of just being false
• Fixed support for big endian CPUs (such as some MIPS CPUs).
• Fixed STM32 not aborting when AVM_ABORT() is used
• Fixed a bug that would leave the STM32 trapped in a loop on hard faults, rather than aborting
• Fixed a bug that would make the VM to loop and failing to process selected fds on Linux
• Fixed classes of exceptions in estdlib.
• Fixed STM32 code that was hard coded to the default target device, now configured based on

the cmake -DDEVICE= parameter
• Fixed hard fault on STM32 durung malloc on boards with more than one bank of sram
• Fixed invalid src_clk error on ESP-IDF >= 5.0
• Fixed changed default to AVM_USE_32BIT_FLOAT=on for STM32 platform to enable use of

single precision hardware FPU on F4/F7 devices.
• Fixed a bug where emscripten register_*_callback/1 functions would use x[1] as second

argument
• Fixed precision of integers used with timers which could yield to halts and wait times smaller

than expected
• Add support for ESP32-C6

AtomVM documentation, Release 0.6.6+git.db7fa169

246 Chapter 13. Changelog

13.11.2 Changed

• Crypto functions on generic_unix platform now rely on MbedTLS instead of OpenSSL
• Platform function providing time used by timers was changed from sys_monotonic_millis

to sys_monotonic_time_u64, sys_monotonic_time_u64_to_ms and
sys_monotonic_time_ms_to_u64.

• Implement atomvm:random/0 and atomvm:rand_bytes/1 on top of
crypto:strong_rand_bytes/1 on generic_unix, ESP32 and RP2040 platforms.

• Performance improvements

13.11.3 Added

• Added support for the OTP socket interface.
• Enhancd performance of STM32 by enabling flash cache and i-cache with branch prediction.
• Added cmake configuration option AVM_CONFIG_REBOOT_ON_NOT_OK for STM32
• New gpio driver for STM32 with nif and port support for read and write functions.
• Added support for interrupts to STM32 GPIO port driver.
• Added suppoprt for PicoW extra gpio pins (led) to the gpio driver.
• Added support for net:getaddrinfo/1,2
• Added minimal support for the OTP ssl interface.
• Added support for crypto:one_time/4,5 on Unix and Pico as well as for crypto:hash/2

on Pico
• Added ability to configure STM32 Nucleo boards onboard UART->USB-COM using

the -DBOARD=nucleo cmake option
• Added STM32 cmake option -DAVM_CFG_CONSOLE= to select a different uart peripheral for

the system console
• Added crypto:strong_rand_bytes/1 using Mbed-TLS (only on generic_unix, ESP32 and

RP2040 platforms)
• Added support for setting the default receive buffer size for sockets via socket:setopt/3
• Added support for pattern matching binaries containing 32 and 64 bit floating point values, but

only when aligned to byte boundaries (e.g. <<0:4, F:32/float>> = Bin is not supported).
• Added experimental backend to get_tcp and get_udp based on the new socket interface
• Added API for managing ESP32 watchdog (only on esp-idf >= v5.x)

13.11.4 Removed

• OpenSSL support, Mbed-TLS is required instead.

13.12 [0.6.0-alpha.1] - 2023-10-09

13.12.1 Added

• Added erlang:spawn_link/1,3
• Added erlang:exit/2
• Added links to process_info/2

 AtomVM documentation, Release 0.6.6+git.db7fa169

13.12. [0.6.0-alpha.1] - 2023-10-09 247

• Added lists:usort/1,2
• Added missing documentation and specifications for available nifs
• Added configurable logging macros to stm32 platform
• Added support for ULP wakeup on ESP32
• Added heap growth strategies as a fine-tuning option to spawn_opt/2,4
• Added crypto:crypto_one_time/4,5 on ESP32
• Improved nif and port support on STM32
• Added support for atomvm:posix_clock_settime/2
• Added support for creations of binaries with unaligned strings
• Added -h and -v flags to generic_unix AtomVM command
• Removed support to ESP32 NVS from network module in order to make it generic. See also

UPDATING.
• Added initial support for Pico-W: on-board LED, Wifi (STA and AP modes).

13.12.2 Changed

• Changed offset of atomvmlib and of program on Pico. See also UPDATING.

13.12.3 Fixed

• Fixed incorrect exit reason for exceptions of class exit
• Fixed several incorrect type specifications
• Fixed esp:nvs_set_binary functions.
• Fixed monotonic_time/1 and system_time/1 functions for Raspberry Pi Pico
• Fixed race conditions in atoms table.
• Fixed a bug in the STM32 port that caused the final result to never be returned.
• Fix bug when building a binary using a 64-bit integer on a 32-bit CPU.
• Fix (using ‘auto’ option) SPI on ESP32 models other than ESP32, such as ESP32S2, ESP32C3, …

13.13 [0.6.0-alpha.0] - 2023-08-13

13.13.1 Added

• Added the ability to specify the HSPI or VSPI ESP32 hardware interfaces when initializing
the SPI Bus.

• Added support for the spi:close/1 function.
• Added AVM_VERBOSE_ABORT CMake define, which when set to on, will print the C module and

line number when a VM abort occurs. This define is off by default.
• Added spi:write/3 and spi:write_read/3 functions to support generalized SPI transac-

tions and arbitrary-length reads and writes from SPI devices.
• Added support for building ESP32 port with all currently supported versions of Espressif

ESP-IDF, version 4.1.x through 4.4.x.
• Added support for controlling_process/2 in gen_udp and gen_tcp modules.
• Added ability to get the atomvm version via erlang:system_info.

AtomVM documentation, Release 0.6.6+git.db7fa169

248 Chapter 13. Changelog

• Added erlang:is_boolean/1 Bif.
• Added support for esp:partition_erase_range/2
• Added support for i2c:close/1
• Added support for erlang:unregister/1
• Added Elixir ESP32 LEDC driver and example
• Added support for uart:close/1
• Added Bitwise support for Elixir
• Added support for esp32-s2, esp32-s3, and esp32-c3 chips.
• Added Elixir I2C driver and example
• Added the ability to specify the I2C port
• Added support for the OTP math module
• Added support for erlang:integer_to_list/2 and erlang:integer_to_binary/2
• Added functions esp:sleep_enable_ext0_wakeup/2 and
esp:sleep_enable_ext1_wakeup/2.

• Added support for FP opcodes 94-102 thus removing the need for AVM_DISABLE_FP=On with
OTP-22+

• Added support for stacktraces
• Added support for utf-8, utf-16, and utf-32 bit syntax modifiers (put and match)
• Added support for Erlang gpio:close/1 and Elixir GPIO.close/1 for ESP32
• Added support for the Erlang gen_event module
• Added start_link support for the network module
• Added support for erlang:monotonic_time/1
• Added start_link support for the gen_statem module
• Added support for serializing floats in erlang external term encoding
• Added support for the SMALL_BIG_EXT erlang external term encoding
• Added support for erlang:memory(binary)
• Added support for callbacks on SNTP updates
• Multithreading support (SMP)
• Added support for code:load_abs/1, code:load_binary/3
• Added support for loading / closing AVMPacks at runtime
• Added support for ESP-IDF v5.x
• Added support for calendar:system_time_to_universal_time/2
• Added support for calendar:datetime_to_gregorian_seconds/1
• Added support for Raspberry Pi Pico
• Added support for nodejs with Wasm
• Added support for a subset of the OTP logger interface
• Added esp:partition_list/0 function
• Added esp:nvs_fetch_binary/2 and nvs_put_binary/3 functions

(esp:nvs_set_binary and functions that default to ?ATOMVM_NVS_NS are deprecated now).
• Added most format possibilities to io:format/2 and io_lib:format/2
• Added unicode module with characters_to_list/1,2 and characters_to_binary
/1,2,3 functions

 AtomVM documentation, Release 0.6.6+git.db7fa169

13.13. [0.6.0-alpha.0] - 2023-08-13 249

• Added support for crypto:hash/2 (ESP32 and generic_unix with openssl)

13.13.2 Fixed

• Fixed issue with formatting integers with io:format() on STM32 platform
• Fixed a bug in the order of child initialization in the supervisor module
• Fixed a bug in the evaluation of receive ... after infinity -> ... expressions
• Fixed a bug in when putting integers in bit syntax with integer field sizes
• Fixed numerous bugs in memory allocations that could crash the VM
• Fixed SNTP support that had been broken in IDF 4.x builds
• Fixed erlang:send/2 not sending to registered name

13.13.3 Breaking Changes

IMPORTANT: These changes are incompatible with previous releases of AtomVM.
• Changed the configuration model of the SPI driver, in order to allow for multiple “follower”

devices to be attached to the same SPI Bus.
• Changed the return value from erlang:system_info(esp32_chip_info) from a tuple to

a map, with additional information.
• Changed the return type of the network:start function to return the tuple {ok, Pid} on

a successful call, instead of the bare atom ok. Applications that use network:start and check
the return value will need to be modified.

• The return type of i2c:read_bytes has changed from returning just a binary to returning
the tuple {ok, Binary} when successful.

• The return type of many i2c operations under error conditions has changed from error to
{error, Reason}, for improved diagnostics.

• The eavmlib logger interface has been removed

13.13.4 Removed

• ESP-IDF v3.x support.

13.14 [0.5.1] - Unreleased

13.14.1 Added

• New function for atom comparison, useful when writing 3rd party components.
• New function for translating an atom term to an int value, according to a given translation table.

This function can be used for translating an atom term to an enum const before doing a switch.
• New no-op ATOM_STR(...) macro for avoiding issues with clang-format.
• [ESP32] REGISTER_PORT_DRIVER for registering additional port drivers without editing any

source file. This allows adding new components by just copying them to the components direc-
tory.

• [ESP32] REGISTER_NIF_COLLECTION for registering additional NIFs sets without editing any
source file. This allows adding new NIFs by just copying them to the components directory.

• New function for getting a map or proplist value using an atom string without poluting the atom

AtomVM documentation, Release 0.6.6+git.db7fa169

250 Chapter 13. Changelog

table.

13.14.2 Fixed

• Fix gen_statem: Cancel outstanding timers during state transitions in order to prevent
spurious timeout messages from being sent to gen_statem process.

• Fix missing Elixir libraries: examvlib was not packed into atomvmlib.avm
• Fix bs_context_to_binary: match offset wasn’t used, leading in certain situations to infinite

loops while matching binaries.
• Fix how start option was handled from bs_restore2 instruction: last saved match offset was

used instead of match starting offset, causing some bytes being skipped.
• Fix another potential bug when doing pattern matching using code compiled with OTP 21.
• [ESP32] [UART]: Allow using different pins for rx, tx, cts and rts.
• [ESP32] [UART]: Replace custom UART handling with esp-idf UART event queues, hence other

UARTs than UART0 are supported, with better performances and stability.
• Fix binaries concat (bs_append instruction) that was adding some extra zeroes at the end of

built binaries.
• Fixed a bug in gen_tcp that prevents an accepting socket from inheriting settings on

the listening socket.
• Fixed a bug in packing and unpacking integers into and from binaries when the bit length is not

a multiple of 8.
• Fixed esp:deep_sleep/1 that did not accept values above 31 minutes.
• Fixed a bug that could cause processes to hang indefinitely when calling ports that have termi-

nated.
• Fixed potential VM crash when parsing external terms.
• Fixed the enforcement of min_free_space process option.

13.15 [0.5.0] - 2022-03-22

 AtomVM documentation, Release 0.6.6+git.db7fa169

13.15. [0.5.0] - 2022-03-22 251

14 Contributor Covenant Code of Conduct

14.1 Our Pledge

We as members, contributors, and leaders pledge to make participation in our community a harass-
ment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity,
sex characteristics, gender identity and expression, level of experience, education, socio-economic
status, nationality, personal appearance, race, religion, or sexual identity and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and
healthy community.

14.2 Our Standards

Examples of behavior that contributes to a positive environment for our community include:
• Demonstrating empathy and kindness toward other people
• Being respectful of differing opinions, viewpoints, and experiences
• Giving and gracefully accepting constructive feedback
• Accepting responsibility and apologizing to those affected by our mistakes, and learning from

the experience
• Focusing on what is best not just for us as individuals, but for the overall community

Examples of unacceptable behavior include:
• The use of sexualized language or imagery, and sexual attention or advances of any kind
• Trolling, insulting or derogatory comments, and personal or political attacks
• Public or private harassment
• Publishing others’ private information, such as a physical or email address, without their explicit

permission
• Other conduct which could reasonably be considered inappropriate in a professional setting

14.3 Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior
and will take appropriate and fair corrective action in response to any behavior that they deem inap-
propriate, threatening, offensive, or harmful.
Community leaders have the right and responsibility to remove, edit, or reject comments, commits,
code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, and will
communicate reasons for moderation decisions when appropriate.

14.4 Scope

This Code of Conduct applies within all community spaces, and also applies when an individual is
officially representing the community in public spaces. Examples of representing our community

AtomVM documentation, Release 0.6.6+git.db7fa169

252 Chapter 14. Contributor Covenant Code of Conduct

include using an official e-mail address, posting via an official social media account, or acting as
an appointed representative at an online or offline event.

14.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the commu-
nity leaders responsible for enforcement at davide AT uninstall.it. All complaints will be reviewed
and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the reporter of any inci-
dent.

14.6 Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining the conse-
quences for any action they deem in violation of this Code of Conduct:

14.6.1 1. Correction

Community Impact: Use of inappropriate language or other behavior deemed unprofessional or
unwelcome in the community.
Consequence: A private, written warning from community leaders, providing clarity around
the nature of the violation and an explanation of why the behavior was inappropriate. A public
apology may be requested.

14.6.2 2. Warning

Community Impact: A violation through a single incident or series of actions.
Consequence: A warning with consequences for continued behavior. No interaction with the people
involved, including unsolicited interaction with those enforcing the Code of Conduct, for a specified
period of time. This includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or permanent ban.

14.6.3 3. Temporary Ban

Community Impact: A serious violation of community standards, including sustained inappropriate
behavior.
Consequence: A temporary ban from any sort of interaction or public communication with
the community for a specified period of time. No public or private interaction with the people
involved, including unsolicited interaction with those enforcing the Code of Conduct, is allowed
during this period. Violating these terms may lead to a permanent ban.

14.6.4 4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community standards, including
sustained inappropriate behavior, harassment of an individual, or aggression toward or disparage-
ment of classes of individuals.
Consequence: A permanent ban from any sort of public interaction within the community.

14.7 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 2.0, available at https:
//www.contributor-covenant.org/version/2/0/code_of_conduct.html.

 AtomVM documentation, Release 0.6.6+git.db7fa169

14.5. Enforcement 253

https://www.contributor-covenant.org

Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement ladder.
For answers to common questions about this code of conduct, see the FAQ at https://www.contribu-
tor-covenant.org/faq. Translations are available at https://www.contributor-covenant.org/transla-
tions.

AtomVM documentation, Release 0.6.6+git.db7fa169

254 Chapter 14. Contributor Covenant Code of Conduct

https://github.com/mozilla/diversity

Chapter 15

Security Policy

15.1 Supported Versions

Version Supported
0.6.x :white_check_mark:
< 0.5 :x:

15.2 Reporting a Vulnerability

To submit a vulnerability report, please contact us at davide at uninstall.it. Please, do not use GitHub
issues for vulnerability reports. Your submission will be promptly reviewed and validated by
a member of our team.

 255

16 AtomVM Update Instructions

16.1 v0.6.4 -> v0.6.5

• ESP32: esp32boot.avm doesn’t contain anymore Elixir standard library, use instead
elixir_esp32boot.avm, or the Elixir release flavor when using an image.

• ESP32: partitioning schema for Elixir flavor is different, so app offset has been changed for Elixir
images. Make sure to use 0x250000 as offset in your mix.exs or when performing manual flash-
ing.

• ESP32 a bug was discovered in i2c:write_bytes/2 that has not been fixed yet. Writing bytes
sequentally using i2c:write_byte/2 still works as a temporary workaround.

• STM32 devices with 512k of flash are not supported in this release, due to lack of flash space.
Support may return in a future release.

16.2 v0.6.0-beta.1 -> v0.6.0-rc.0

• Drivers that send messages from Esp32 callbacks should use new functions
port_send_message_from_task, globalcontext_send_message_from_task or
memory_destroy_heap_from_task instead of port_send_message,
globalcontext_send_message and memory_destroy_heap.

16.3 v0.6.0-alpha.2 -> v0.6.0-beta.0

• Registers are no longer preserved by GC by default when invoking nifs, as part of the fix of inter-
pretation of the emulator of the live parameter of many opcodes. NIFs may need to call
memory_ensure_free_with_roots and pass their arguments are roots, instead of
memory_ensure_free or memory_ensure_free_opt.

• Port call message tuple format has been changed, hence previous version of the standard library
cannot be used. Libraries (or boot .avm file) from latest version must be used.

16.4 v0.6.0-alpha.0 -> v0.6.0-alpha.1

• Libraries (or boot .avm file) from latest version must be used. Standard library from
v0.6.0-alpha.0 cannot work on top of latest version.

• Address (offset) of programs for Pico was changed from 0x100A0000 to 0x10100000. UF2 binaries
need to be rebuilt with the proper offset using uf2tool.

• On ESP32, SSID and PSK stored in NVS are no longer read by network module. Applications
must fetch the values and pass them to network:start/1 or network:start_link/1.

• The lib.avm partition is no longer supported on ESP32. If you have been using a spacialized
partitioning of your ESP32 flash (uncommon), AtomVM will no longer try to load code off this
partition name.

Apache License

AtomVM documentation, Release 0.6.6+git.db7fa169

256 Chapter 16. AtomVM Update Instructions

Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as
defined by Sections 1 through 9 of this document.
“Licensor” shall mean the copyright owner or entity authorized by the copyright owner
that is granting the License.
“Legal Entity” shall mean the union of the acting entity and all other entities that control,
are controlled by, or are under common control with that entity. For the purposes of this
definition, “control” means (i) the power, direct or indirect, to cause the direction or
management of such entity, whether by contract or otherwise, or (ii) ownership of fifty
percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such
entity.
“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted
by this License.
“Source” form shall mean the preferred form for making modifications, including but not
limited to software source code, documentation source, and configuration files.
“Object” form shall mean any form resulting from mechanical transformation or transla-
tion of a Source form, including but not limited to compiled object code, generated docu-
mentation, and conversions to other media types.
“Work” shall mean the work of authorship, whether in Source or Object form, made avail-
able under the License, as indicated by a copyright notice that is included in or attached to
the work (an example is provided in the Appendix below).
“Derivative Works” shall mean any work, whether in Source or Object form, that is based
on (or derived from) the Work and for which the editorial revisions, annotations, elabora-
tions, or other modifications represent, as a whole, an original work of authorship. For
the purposes of this License, Derivative Works shall not include works that remain sepa-
rable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative
Works thereof.
“Contribution” shall mean any work of authorship, including the original version of
the Work and any modifications or additions to that Work or Derivative Works thereof,
that is intentionally submitted to Licensor for inclusion in the Work by the copyright
owner or by an individual or Legal Entity authorized to submit on behalf of the copyright
owner. For the purposes of this definition, “submitted” means any form of electronic,
verbal, or written communication sent to the Licensor or its representatives, including but
not limited to communication on electronic mailing lists, source code control systems, and
issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose
of discussing and improving the Work, but excluding communication that is conspicu-
ously marked or otherwise designated in writing by the copyright owner as “Not a Contri-
bution.”
“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom
a Contribution has been received by Licensor and subsequently incorporated within
the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royal-
ty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly
display, publicly perform, sublicense, and distribute the Work and such Derivative Works
in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contrib-
utor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section) patent license to make, have made, use, offer
to sell, sell, import, and otherwise transfer the Work, where such license applies only to
those patent claims licensable by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s) with the Work to which

 AtomVM documentation, Release 0.6.6+git.db7fa169

16.4. v0.6.0-alpha.0 -> v0.6.0-alpha.1 257

http://www.apache.org/licenses/

such Contribution(s) was submitted. If You institute patent litigation against any entity
(including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contri-
bution incorporated within the Work constitutes direct or contributory patent infringe-
ment, then any patent licenses granted to You under this License for that Work shall termi-
nate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works
thereof in any medium, with or without modifications, and in Source or Object form,
provided that You meet the following conditions:

1. You must give any other recipients of the Work or Derivative Works a copy of this
License; and

2. You must cause any modified files to carry prominent notices stating that You
changed the files; and

3. You must retain, in the Source form of any Derivative Works that You distribute, all
copyright, patent, trademark, and attribution notices from the Source form of
the Work, excluding those notices that do not pertain to any part of the Derivative
Works; and

4. If the Work includes a “NOTICE” text file as part of its distribution, then any Deriva-
tive Works that You distribute must include a readable copy of the attribution notices
contained within such NOTICE file, excluding those notices that do not pertain to
any part of the Derivative Works, in at least one of the following places: within
a NOTICE text file distributed as part of the Derivative Works; within the Source
form or documentation, if provided along with the Derivative Works; or, within
a display generated by the Derivative Works, if and wherever such third-party
notices normally appear. The contents of the NOTICE file are for informational
purposes only and do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside or as an addendum to
the NOTICE text from the Work, provided that such additional attribution notices
cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide addi-
tional or different license terms and conditions for use, reproduction, or distribution of
Your modifications, or for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with the conditions stated
in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution
intentionally submitted for inclusion in the Work by You to the Licensor shall be under
the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any
separate license agreement you may have executed with Licensor regarding such Contri-
butions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks,
service marks, or product names of the Licensor, except as required for reasonable and
customary use in describing the origin of the Work and reproducing the content of
the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,
Licensor provides the Work (and each Contributor provides its Contributions) on an “AS
IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied, including, without limitation, any warranties or conditions of TITLE,
NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR
PURPOSE. You are solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of permis-
sions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including
negligence), contract, or otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You

AtomVM documentation, Release 0.6.6+git.db7fa169

258 Chapter 16. AtomVM Update Instructions

for damages, including any direct, indirect, special, incidental, or consequential damages
of any character arising as a result of this License or out of the use or inability to use
the Work (including but not limited to damages for loss of goodwill, work stoppage,
computer failure or malfunction, or any and all other commercial damages or losses), even
if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative
Works thereof, You may choose to offer, and charge a fee for, acceptance of support,
warranty, indemnity, or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only on Your own behalf and
on Your sole responsibility, not on behalf of any other Contributor, and only if You agree
to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or
claims asserted against, such Contributor by reason of your accepting any such warranty
or additional liability.

END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with
the fields enclosed by brackets “[]” replaced with your own identifying information.
(Don’t include the brackets!) The text should be enclosed in the appropriate comment
syntax for the file format. We also recommend that a file or class name and description of
purpose be included on the same “printed page” as the copyright notice for easier identi-
fication within third-party archives.

Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except
in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

• genindex
• modindex
• search

 AtomVM documentation, Release 0.6.6+git.db7fa169

16.4. v0.6.0-alpha.0 -> v0.6.0-alpha.1 259

http://www.apache.org/licenses/LICENSE-2.0

 261

	1 Welcome to AtomVM!
	1.1 What is AtomVM?
	1.2 Why Erlang/Elixir?
	1.3 Design Philosophy
	1.4 Licensing
	1.5 Source Code
	1.6 Contributing
	1.7 Where to go from here

	2 Release Notes
	2.1 Required Software
	2.1.1 ESP32 Support
	2.1.2 STM32 Support
	2.1.3 Raspberry Pi Pico Support

	3 Getting Started Guide
	3.1 Getting Started on the ESP32 platform
	3.1.1 ESP32 Requirements
	3.1.2 ESP32 Deployment Overview
	3.1.3 Connecting the ESP32 device
	3.1.4 Deploying the ESP32 AtomVM virtual machine
	Flashing a binary image to ESP32
	Building for ESP32 from source

	3.1.5 Deploying an AtomVM application for ESP32

	3.2 Getting Started on the STM32 platform
	3.2.1 STM32 Requirements
	3.2.2 Deploying the STM32 AtomVM virtual machine
	Flashing a binary image to STM32
	Console Printing

	3.2.3 Deploying an AtomVM application for STM32

	3.3 Getting Started on the Raspberry Pi Pico platform
	3.3.1 Pico Requirements
	3.3.2 Deploying the Pico AtomVM virtual machine
	Flashing a binary image to Pico

	3.3.3 Potential Issues with macOS
	3.3.4 Deploying an AtomVM application for Generic Unix

	3.4 Getting Started on the Generic UNIX platform
	3.4.1 Generic UNIX Requirements
	3.4.2 Installing the AtomVM virtual machine
	Installation on Linux Platforms
	Installation on MacOS
	Building on MacOS from source

	3.4.3 Running applications on the Generic UNIX platform

	3.5 Getting Started with AtomVM WebAssembly
	3.5.1 Getting Started with AtomVM WebAssembly port for NodeJS
	3.5.2 Getting Started with AtomVM WebAssembly port for browsers
	Trying locally from AtomVM source tree
	Using a hosting service with a _headers file
	Using web server such as Nginx
	Using Javascript service worker trick

	3.6 Where to go from here

	4 AtomVM Tooling
	4.1 atomvm_rebar3_plugin
	4.1.1 Prerequisites for atomvm_rebar3_plugin
	4.1.2 Erlang Example Program
	4.1.3 Creating an AtomVM AVM file with rebar3
	4.1.4 Running applications on generic_unix
	4.1.5 Flashing your application with rebar3
	ESP32
	STM32
	Raspberry Pico

	4.2 ExAtomVM
	4.2.1 Prerequisites for ExAtomVM
	4.2.2 Elixir Example Program
	4.2.3 Creating an AtomVM AVM file with mix
	4.2.4 Running on the generic_unix platform
	4.2.5 Flashing your application with mix
	ESP32 flash task
	STM32 flash task

	4.3 atomvm_packbeam
	4.3.1 Installation
	4.3.2 Usage
	Creating AVM files
	Start Flags
	Pruning

	Listing AVM file contents
	Extracting AVM file contents
	Deleting AVM file contents

	4.3.3 Help

	4.4 Where to go from here

	5 Programmers Guide
	5.1 AtomVM Features
	5.1.1 Limitations

	5.2 AtomVM Development
	5.2.1 Development Environment
	ESP32 Deployment Requirements
	STM32 Deployment Requirements
	Raspberry Pi Pico Deployment Requirements

	5.2.2 Development Workflow

	5.3 Applications
	5.3.1 Packbeam files
	5.3.2 packbeam tool
	5.3.3 Running AtomVM
	AtomVM program syntax

	5.4 Core APIs
	5.4.1 Standard Libraries
	5.4.2 Spawning Processes
	5.4.3 Console Output
	5.4.4 Logging
	The logger_manager
	Writing your own log handler

	5.4.5 Process Management
	5.4.6 External Term Format
	5.4.7 System APIs
	5.4.8 System Time
	5.4.9 Date and Time
	5.4.10 Miscellaneous APIs
	5.4.11 StackTraces
	5.4.12 Reading data from AVM files
	5.4.13 Code Loading
	5.4.14 Math
	5.4.15 Cryptographic Operations

	5.5 ESP32-specific APIs
	5.5.1 System-Level APIs
	5.5.2 Non-volatile Storage
	5.5.3 Storage
	Mounting MMC SD card
	Mounting SPI SD card
	Mounting internal flash
	Unmounting Storage

	5.5.4 Restart and Deep Sleep
	RTC Memory

	5.5.5 Miscellaneous ESP32 APIs

	5.6 Peripherals
	5.6.1 GPIO
	Digital Read
	Digital Write
	Interrupt Handling

	5.6.2 ESP32 ADC
	ESP32 ADC configuration options
	ESP32 ADC read options

	5.6.3 I2C
	5.6.4 SPI
	5.6.5 UART
	5.6.6 LED Control

	5.7 Protocols
	5.7.1 Network (ESP32 only)
	STA mode
	AP mode
	STA+AP mode
	SNTP

	5.7.2 UDP
	5.7.3 TCP
	Server-side TCP
	Client-side TCP

	5.8 Socket Programming
	5.8.1 Server-side TCP Socket Programming
	5.8.2 Client-side TCP Socket Programming
	5.8.3 Sending and Receiving Data
	5.8.4 Getting Information about Connected Sockets
	5.8.5 Closing and Shutting down Sockets
	5.8.6 Setting Socket Options
	5.8.7 UDP Socket Programming
	5.8.8 Miscellaneous Networking APIs

	5.9 Where to go from here

	6 Network Programming Guide
	6.1 Station (STA) mode
	6.1.1 STA Mode Convenience Functions

	6.2 AP mode
	6.2.1 AP Mode Convenience Functions

	6.3 STA+AP mode
	6.4 SNTP Support
	6.5 NVS Credentials
	6.6 Stopping the Network

	7 Build Instructions
	7.1 Downloading AtomVM
	7.2 Source code organization
	7.3 Platform Specific Build Instructions
	7.4 Building for Generic UNIX
	7.4.1 Generic UNIX Build Requirements
	7.4.2 Generic UNIX Build Instructions
	Special Note for MacOS users

	7.4.3 Running tests

	7.5 Building for ESP32
	7.5.1 ESP32 Build Requirements
	7.5.2 ESP32 Build Instructions
	7.5.3 Running tests for ESP32
	7.5.4 Flash Layout
	7.5.5 The boot.avm and main.avm partitions
	7.5.6 Building a Release Image
	Flashing Release Images

	7.5.7 Flashing Applications
	Flashing the core libraries

	7.5.8 Adding custom Nifs, Ports, and third-party components
	Adding a custom AtomVM Nif
	Adding a custom AtomVM Port

	7.6 Building for STM32
	7.6.1 STM32 Prerequisites
	7.6.2 Setup libopencm3
	7.6.3 Build AtomVM with cmake toolchain file
	7.6.4 Changing the target device
	7.6.5 Configuring the Console
	7.6.6 Configure STM32 logging with cmake
	7.6.7 Console Printing on STM32
	7.6.8 Configuring deployment builds for STM32

	7.7 Building for Raspberry Pi Pico
	7.7.1 Pico Prerequisites
	7.7.2 AtomVM build steps (Pico)
	7.7.3 AtomVM build steps (Pico-W)
	7.7.4 libAtomVM build steps for Pico
	7.7.5 Running tests for Pico

	7.8 Building for emscripten
	7.8.1 WASM Prerequisites
	7.8.2 Building for NodeJS
	7.8.3 Running tests with NodeJS
	7.8.4 Building for the web
	7.8.5 Running tests with Cypress

	8 AtomVM Internals
	8.1 What is an Abstract Machine?
	8.2 AtomVM Data Structures
	8.2.1 The GlobalContext
	Process Management

	8.2.2 Contexts

	8.3 The Scheduler
	8.4 Tasks and synchronization mechanisms
	8.5 Mailboxes and signals
	8.6 Stacktraces
	8.6.1 Line Numbers
	The line-refs table
	The filenames table
	The line-ref-offsets list

	8.7 AtomVM WebAssembly port
	8.7.1 NodeJS environment build
	8.7.2 Web environment build

	9 Memory Management
	9.1 The Context structure
	9.1.1 The Heap and Stack
	9.1.2 Heap growth strategies
	9.1.3 Registers
	9.1.4 Process Dictionary
	9.1.5 Heap Fragments
	9.1.6 Mailbox
	9.1.7 Memory Graph

	9.2 Simple Terms
	9.2.1 Atoms
	9.2.2 Integers
	9.2.3 nil
	9.2.4 Pids

	9.3 Boxed terms
	9.3.1 Boxed term pointers
	9.3.2 References
	9.3.3 Tuples
	9.3.4 Maps
	9.3.5 Binaries
	Heap Binaries
	Reference Counted Binaries
	Const Binaries
	Match Binaries
	Sub-Binaries

	9.4 Lists
	9.4.1 Strings
	9.4.2 Functions

	9.5 Special Stack Types
	9.5.1 Continuation Pointer
	9.5.2 Catch Labels

	9.6 Garbage Collection
	9.6.1 When does garbage collection happen?
	9.6.2 Garbage Collection Steps
	Allocation
	Shallow Copy
	Iterative Scan and Copy
	MSO Sweep
	Deletion

	10 Packbeam Format
	10.1 Overview
	10.2 Packbeam Header
	10.3 File encodings
	10.3.1 File Header
	10.3.2 Example
	10.3.3 BEAM files
	10.3.4 Normal Files
	10.3.5 end file
	Example end header

	11 API Reference Documentation
	11.1 Erlang Libraries
	11.1.1 estdlib
	The estdlib library
	Modules

	Module base64
	Description
	Function Index
	Function Details
	decode/1
	decode_to_string/1
	encode/1
	encode_to_string/1

	Module binary
	Function Index
	Function Details
	at/2
	decode_hex/1
	encode_hex/1
	encode_hex/2
	part/3
	split/2
	split/3

	Module calendar
	Description
	Data Types
	date()
	datetime()
	day()
	day_of_week()
	gregorian_days()
	hour()
	minute()
	month()
	second()
	time()
	year()

	Function Index
	Function Details
	date_to_gregorian_days/1
	date_to_gregorian_days/3
	datetime_to_gregorian_seconds/1
	day_of_the_week/1
	day_of_the_week/3
	system_time_to_universal_time/2

	Module code
	Function Index
	Function Details
	ensure_loaded/1
	load_abs/1
	load_binary/3

	Module crypto
	Data Types
	cipher_iv()
	cipher_no_iv()
	crypto_opt()
	crypto_opts()
	digest()
	hash_algorithm()
	padding()

	Function Index
	Function Details
	crypto_one_time/4
	crypto_one_time/5
	hash/2
	strong_rand_bytes/1

	Module erlang
	Data Types
	atom_encoding()
	demonitor_option()
	float_format_option()
	heap_growth_strategy()
	mem_type()
	spawn_option()
	time_unit()
	timestamp()

	Function Index
	Function Details
	apply/2
	apply/3
	atom_to_binary/1
	atom_to_binary/2
	atom_to_list/1
	binary_to_atom/1
	binary_to_atom/2
	binary_to_integer/1
	binary_to_integer/2
	binary_to_list/1
	binary_to_term/1
	demonitor/1
	demonitor/2
	display/1
	erase/1
	exit/1
	exit/2
	float_to_binary/1
	float_to_binary/2
	float_to_list/1
	float_to_list/2
	fun_to_list/1
	function_exported/3
	garbage_collect/0
	garbage_collect/1
	get/1
	get_module_info/1
	get_module_info/2
	group_leader/0
	group_leader/2
	integer_to_binary/1
	integer_to_binary/2
	integer_to_list/1
	integer_to_list/2
	iolist_to_binary/1
	is_map/1
	is_map_key/2
	is_process_alive/1
	is_record/2
	link/1
	list_to_atom/1
	list_to_binary/1
	list_to_existing_atom/1
	list_to_integer/1
	list_to_integer/2
	list_to_tuple/1
	localtime/0
	make_ref/0
	map_get/2
	map_size/1
	max/2
	md5/1
	memory/1
	min/2
	monitor/2
	monotonic_time/1
	open_port/2
	pid_to_list/1
	process_flag/2
	process_info/2
	processes/0
	put/2
	ref_to_list/1
	register/2
	send/2
	send_after/3
	spawn/1
	spawn/3
	spawn_link/1
	spawn_link/3
	spawn_opt/2
	spawn_opt/4
	start_timer/3
	system_flag/2
	system_info/1
	system_time/1
	term_to_binary/1
	timestamp/0
	universaltime/0
	unlink/1
	unregister/1
	whereis/1

	Module erts_debug
	Function Index
	Function Details
	flat_size/1

	Module gen_event
	Function Index
	Function Details
	add_handler/3
	delete_handler/3
	notify/2
	start/0
	start/2
	start_link/0
	start_link/2
	stop/1
	sync_notify/2

	Module gen_server
	Description
	Data Types
	from()
	options()
	server_ref()

	Function Index
	Function Details
	call/2
	call/3
	cast/2
	init_it/4
	init_it/5
	reply/2
	start/3
	start/4
	start_link/3
	start_link/4
	start_monitor/3
	start_monitor/4
	stop/1
	stop/3

	Module gen_statem
	Description
	Data Types
	options()
	server_ref()

	Function Index
	Function Details
	call/2
	call/3
	cast/2
	reply/2
	start/3
	start/4
	start_link/3
	start_link/4
	stop/1
	stop/3

	Module gen_tcp
	Description
	Data Types
	connect_option()
	listen_option()
	option()
	packet()
	reason()

	Function Index
	Function Details
	accept/1
	accept/2
	close/1
	connect/3
	controlling_process/2
	listen/2
	recv/2
	recv/3
	send/2

	Module gen_udp
	Description
	Data Types
	option()
	packet()
	reason()

	Function Index
	Function Details
	close/1
	controlling_process/2
	open/1
	open/2
	recv/2
	recv/3
	send/4

	Module inet
	Data Types
	hostname()
	ip4_address()
	ip_address()
	moniker()
	port_number()
	socket()
	socket_impl()

	Function Index
	Function Details
	close/1
	peername/1
	port/1
	sockname/1

	Module io
	Description
	Function Index
	Function Details
	format/1
	format/2
	get_line/1
	put_chars/1
	put_chars/2

	Module io_lib
	Description
	Function Index
	Function Details
	format/2
	latin1_char_list/1

	Module lists
	Description
	Function Index
	Function Details
	all/2
	any/2
	delete/2
	duplicate/2
	filter/2
	filtermap/2
	flatten/1
	foldl/3
	foldr/3
	foreach/2
	join/2
	keydelete/3
	keyfind/3
	keymember/3
	keyreplace/4
	keystore/4
	keytake/3
	last/1
	map/2
	mapfoldl/3
	member/2
	nth/2
	nthtail/2
	reverse/1
	reverse/2
	search/2
	seq/2
	seq/3
	sort/1
	sort/2
	split/2
	sublist/2
	usort/1
	usort/2

	Module logger
	Description
	Data Types
	level()
	string_or_report()

	Function Index
	Function Details
	alert/1
	alert/2
	alert/3
	allow/2
	compare/2
	critical/1
	critical/2
	critical/3
	debug/1
	debug/2
	debug/3
	emergency/1
	emergency/2
	emergency/3
	error/1
	error/2
	error/3
	info/1
	info/2
	info/3
	log/2
	log/3
	log/4
	notice/1
	notice/2
	notice/3
	warning/1
	warning/2
	warning/3

	Module maps
	Description
	Data Types
	iterator()
	iterator()
	iterator_order()
	iterator_order()
	map_or_iterator()

	Function Index
	Function Details
	filter/2
	find/2
	fold/3
	foreach/2
	from_keys/2
	from_list/1
	get/2
	get/3
	is_key/2
	iterator/1
	iterator/2
	keys/1
	map/2
	merge/2
	merge_with/3
	new/0
	next/1
	put/3
	remove/2
	size/1
	to_list/1
	update/3
	values/1

	Module math
	Function Index
	Function Details
	acos/1
	acosh/1
	asin/1
	asinh/1
	atan/1
	atan2/2
	atanh/1
	ceil/1
	cos/1
	cosh/1
	exp/1
	floor/1
	fmod/2
	log/1
	log10/1
	log2/1
	pi/0
	pow/2
	sin/1
	sinh/1
	sqrt/1
	tan/1
	tanh/1

	Module net
	Data Types
	addrinfo()
	service()

	Function Index
	Function Details
	getaddrinfo/1
	getaddrinfo/2

	Module proplists
	Description
	Data Types
	property()
	proplist()

	Function Index
	Function Details
	compact/1
	delete/2
	from_map/1
	get_all_values/2
	get_bool/2
	get_value/2
	get_value/3
	is_defined/2
	lookup/2
	lookup_all/2
	property/1
	property/2
	to_map/1
	unfold/1

	Module queue
	Data Types
	queue()
	queue()

	Function Index
	Function Details
	all/2
	any/2
	delete/2
	delete_r/2
	delete_with/2
	delete_with_r/2
	drop/1
	drop_r/1
	filter/2
	filtermap/2
	fold/3
	from_list/1
	get/1
	get_r/1
	in/2
	in_r/2
	is_empty/1
	is_queue/1
	join/2
	len/1
	member/2
	new/0
	out/1
	out_r/1
	peek/1
	peek_r/1
	reverse/1
	split/2
	to_list/1

	Module sets
	Data Types
	set()
	set()

	Function Index
	Function Details
	add_element/2
	del_element/2
	filter/2
	filtermap/2
	fold/3
	from_list/1
	from_list/2
	intersection/1
	intersection/2
	is_disjoint/2
	is_element/2
	is_empty/1
	is_equal/2
	is_set/1
	is_subset/2
	map/2
	new/0
	new/1
	size/1
	subtract/2
	to_list/1
	union/1
	union/2

	Module socket
	Data Types
	domain()
	in_addr()
	port_number()
	protocol()
	sockaddr()
	sockaddr_in()
	socket()
	socket_option()
	type()

	Function Index
	Function Details
	accept/1
	accept/2
	bind/2
	close/1
	connect/2
	listen/1
	listen/2
	open/3
	peername/1
	recv/1
	recv/2
	recv/3
	recvfrom/1
	recvfrom/2
	recvfrom/3
	send/2
	sendto/3
	setopt/3
	shutdown/2
	sockname/1

	Module ssl
	Data Types
	client_option()
	host()
	hostname()
	ip_address()
	reason()
	sni()
	socket_option()
	sslsocket()
	tls_client_option()

	Function Index
	Function Details
	close/1
	connect/3
	handle_call/3
	handle_cast/2
	handle_info/2
	init/1
	recv/2
	send/2
	start/0
	stop/0
	terminate/2

	Module string
	Description
	Function Index
	Function Details
	find/2
	find/3
	split/2
	split/3
	to_lower/1
	to_upper/1
	trim/1
	trim/2

	Module supervisor
	Function Index
	Function Details
	handle_call/3
	handle_cast/2
	handle_info/2
	init/1
	start_link/2
	start_link/3

	Module timer
	Description
	Function Index
	Function Details
	sleep/1

	Module unicode
	Description
	Data Types
	chardata()
	charlist()
	encoding()
	latin1_chardata()
	unicode_binary()

	Function Index
	Function Details
	characters_to_binary/1
	characters_to_binary/2
	characters_to_binary/3
	characters_to_list/1
	characters_to_list/2

	11.1.2 eavmlib
	The eavmlib library
	Modules

	Module ahttp_client
	Data Types
	backend()
	connection()
	data_response()
	done_response()
	error_tuple()
	header_continuation_response()
	header_response()
	host()
	option()
	protocol()
	response()
	socket_message()
	status_response()

	Function Index
	Function Details
	close/1
	connect/4
	recv/2
	request/5
	stream/2
	stream_request_body/3

	Module atomvm
	Description
	Data Types
	avm_path()
	platform_name()
	posix_dir()
	posix_error()
	posix_fd()
	posix_open_flag()

	Function Index
	Function Details
	add_avm_pack_binary/2
	add_avm_pack_file/2
	close_avm_pack/2
	get_start_beam/1
	platform/0
	posix_clock_settime/2
	posix_close/1
	posix_closedir/1
	posix_open/2
	posix_open/3
	posix_opendir/1
	posix_read/2
	posix_readdir/1
	posix_write/2
	rand_bytes/1
	random/0
	read_priv/2

	Module avm_pubsub
	Function Index
	Function Details
	handle_call/3
	handle_info/2
	init/1
	pub/3
	start/0
	start/1
	sub/2
	sub/3
	terminate/2
	unsub/2
	unsub/3

	Module console
	Function Index
	Function Details
	flush/0
	print/1
	puts/1

	Module emscripten
	Description
	Data Types
	focus_event()
	html5_target()
	keyboard_event()
	listener_handle()
	mouse_event()
	promise()
	register_error_reason()
	register_option()
	register_options()
	register_result()
	run_script_opt()
	touch_event()
	touch_point()
	ui_event()
	wheel_event()

	Function Index
	Function Details
	promise_reject/1
	promise_reject/2
	promise_resolve/1
	promise_resolve/2
	register_blur_callback/1
	register_blur_callback/2
	register_blur_callback/3
	register_click_callback/1
	register_click_callback/2
	register_click_callback/3
	register_dblclick_callback/1
	register_dblclick_callback/2
	register_dblclick_callback/3
	register_focus_callback/1
	register_focus_callback/2
	register_focus_callback/3
	register_focusin_callback/1
	register_focusin_callback/2
	register_focusin_callback/3
	register_focusout_callback/1
	register_focusout_callback/2
	register_focusout_callback/3
	register_keydown_callback/1
	register_keydown_callback/2
	register_keydown_callback/3
	register_keypress_callback/1
	register_keypress_callback/2
	register_keypress_callback/3
	register_keyup_callback/1
	register_keyup_callback/2
	register_keyup_callback/3
	register_mousedown_callback/1
	register_mousedown_callback/2
	register_mousedown_callback/3
	register_mouseenter_callback/1
	register_mouseenter_callback/2
	register_mouseenter_callback/3
	register_mouseleave_callback/1
	register_mouseleave_callback/2
	register_mouseleave_callback/3
	register_mousemove_callback/1
	register_mousemove_callback/2
	register_mousemove_callback/3
	register_mouseout_callback/1
	register_mouseout_callback/2
	register_mouseout_callback/3
	register_mouseover_callback/1
	register_mouseover_callback/2
	register_mouseover_callback/3
	register_mouseup_callback/1
	register_mouseup_callback/2
	register_mouseup_callback/3
	register_resize_callback/1
	register_resize_callback/2
	register_resize_callback/3
	register_scroll_callback/1
	register_scroll_callback/2
	register_scroll_callback/3
	register_touchcancel_callback/1
	register_touchcancel_callback/2
	register_touchcancel_callback/3
	register_touchend_callback/1
	register_touchend_callback/2
	register_touchend_callback/3
	register_touchmove_callback/1
	register_touchmove_callback/2
	register_touchmove_callback/3
	register_touchstart_callback/1
	register_touchstart_callback/2
	register_touchstart_callback/3
	register_wheel_callback/1
	register_wheel_callback/2
	register_wheel_callback/3
	run_script/1
	run_script/2
	unregister_blur_callback/1
	unregister_click_callback/1
	unregister_dblclick_callback/1
	unregister_focus_callback/1
	unregister_focusin_callback/1
	unregister_focusout_callback/1
	unregister_keydown_callback/1
	unregister_keypress_callback/1
	unregister_keyup_callback/1
	unregister_mousedown_callback/1
	unregister_mouseenter_callback/1
	unregister_mouseleave_callback/1
	unregister_mousemove_callback/1
	unregister_mouseout_callback/1
	unregister_mouseover_callback/1
	unregister_mouseup_callback/1
	unregister_resize_callback/1
	unregister_scroll_callback/1
	unregister_touchcancel_callback/1
	unregister_touchend_callback/1
	unregister_touchmove_callback/1
	unregister_touchstart_callback/1
	unregister_wheel_callback/1

	Module esp
	Description
	Data Types
	esp_partition()
	esp_partition_address()
	esp_partition_props()
	esp_partition_size()
	esp_partition_subtype()
	esp_partition_type()
	esp_reset_reason()
	esp_wakeup_cause()
	interface()
	mac()
	mounted_fs()
	task_wdt_config()
	task_wdt_user_handle()

	Function Index
	Function Details
	deep_sleep/0
	deep_sleep/1
	deep_sleep_enable_gpio_wakeup/2
	freq_hz/0
	get_default_mac/0
	get_mac/1
	mount/4
	nvs_erase_all/0
	nvs_erase_all/1
	nvs_erase_key/1
	nvs_erase_key/2
	nvs_fetch_binary/2
	nvs_get_binary/1
	nvs_get_binary/2
	nvs_get_binary/3
	nvs_put_binary/3
	nvs_reformat/0
	nvs_set_binary/2
	nvs_set_binary/3
	partition_list/0
	reset_reason/0
	restart/0
	rtc_slow_get_binary/0
	rtc_slow_set_binary/1
	sleep_disable_ext1_wakeup_io/1
	sleep_enable_ext0_wakeup/2
	sleep_enable_ext1_wakeup/2
	sleep_enable_ext1_wakeup_io/2
	sleep_enable_ulp_wakeup/0
	sleep_get_wakeup_cause/0
	task_wdt_add_user/1
	task_wdt_deinit/0
	task_wdt_delete_user/1
	task_wdt_init/1
	task_wdt_reconfigure/1
	task_wdt_reset_user/1
	umount/1

	Module esp_adc
	Description
	Data Types
	adc_pin()
	adc_rsrc()
	attenuation()
	bit_width()
	pin_option()
	pin_options()
	raw_value()
	read_option()
	read_options()
	reading()
	voltage_reading()

	Function Index
	Function Details
	acquire/2
	acquire/4
	deinit/1
	init/0
	read/1
	read/2
	release_channel/1
	sample/2
	sample/3
	start/0
	start/1
	start/2
	stop/0
	stop/1

	Module gpio
	Description
	Data Types
	direction()
	gpio()
	gpio_bank()
	high_level()
	level()
	low_level()
	mode_config()
	output_speed()
	pin()
	pin_tuple()
	pull()
	trigger()

	Function Index
	Function Details
	attach_interrupt/2
	close/1
	deep_sleep_hold_dis/0
	deep_sleep_hold_en/0
	deinit/1
	detach_interrupt/1
	digital_read/1
	digital_write/2
	hold_dis/1
	hold_en/1
	init/1
	open/0
	read/2
	remove_int/2
	set_direction/3
	set_int/3
	set_int/4
	set_level/3
	set_pin_mode/2
	set_pin_pull/2
	start/0
	stop/0

	Module http_server
	Function Index
	Function Details
	parse_query_string/1
	reply/3
	reply/4
	start_server/2

	Module i2c
	Description
	Data Types
	address()
	freq_hz()
	i2c()
	param()
	params()
	peripheral()
	pin()
	register()

	Function Index
	Function Details
	begin_transmission/2
	close/1
	end_transmission/1
	open/1
	read_bytes/3
	read_bytes/4
	write_byte/2
	write_bytes/2
	write_bytes/3
	write_bytes/4

	Module json_encoder
	Description
	Function Index
	Function Details
	encode/1

	Module ledc
	Description
	Data Types
	channel()
	channel_cfg()
	channel_config()
	duty()
	duty_cfg()
	duty_resolution()
	duty_resolution_cfg()
	fade_mode()
	freq_hz()
	freq_hz_cfg()
	gpio_num()
	gpio_num_cfg()
	hpoint()
	hpoint_cfg()
	ledc_error_code()
	speed_mode()
	speed_mode_cfg()
	timer_config()
	timer_num()
	timer_num_cfg()
	timer_sel()
	timer_sel_cfg()

	Function Index
	Function Details
	channel_config/1
	fade_func_install/1
	fade_func_uninstall/0
	fade_start/3
	get_duty/2
	get_freq/2
	set_duty/3
	set_fade_with_step/5
	set_fade_with_time/4
	set_freq/3
	stop/3
	timer_config/1
	update_duty/2

	Module network
	Data Types
	ap_channel_cfg()
	ap_config()
	ap_config_property()
	ap_max_connections_config()
	ap_ssid_hidden_config()
	ap_sta_connected_config()
	ap_sta_disconnected_config()
	ap_sta_ip_assigned_config()
	ap_started_config()
	db()
	dhcp_hostname_config()
	ghz24_channel()
	ghz5_160mhz_channel()
	ghz5_20mhz_channel()
	ghz5_40mhz_channel()
	ghz5_80mhz_channel()
	ip_info()
	ipv4_address()
	ipv4_info()
	mac()
	network_config()
	octet()
	psk_config()
	sntp_config()
	sntp_config_property()
	sntp_host_config()
	sntp_synchronized_config()
	ssid_config()
	sta_beacon_timeout_config()
	sta_config()
	sta_config_property()
	sta_connected_config()
	sta_disconnected_config()
	sta_got_ip_config()
	wifi_channel()

	Function Index
	Function Details
	handle_continue/2
	sta_rssi/0
	start/1
	start_link/1
	stop/0
	wait_for_ap/0
	wait_for_ap/1
	wait_for_ap/2
	wait_for_sta/0
	wait_for_sta/1
	wait_for_sta/2

	Module network_fsm
	Description
	Function Index
	Function Details
	start/1
	stop/0
	wait_for_ap/0
	wait_for_ap/1
	wait_for_ap/2
	wait_for_sta/0
	wait_for_sta/1
	wait_for_sta/2

	Module pico
	Description
	Function Index
	Function Details
	cyw43_arch_gpio_get/1
	cyw43_arch_gpio_put/2
	rtc_set_datetime/1

	Module port
	Description
	Function Index
	Function Details
	call/2
	call/3

	Module spi
	Description
	Data Types
	address()
	bus_config()
	device_config()
	device_name()
	params()
	peripheral()
	spi()
	transaction()

	Function Index
	Function Details
	close/1
	open/1
	read_at/4
	write/3
	write_at/5
	write_read/3

	Module timestamp_util
	Description
	Data Types
	megasecs()
	microsecs()
	secs()
	timestamp()

	Function Index
	Function Details
	delta/2
	delta_ms/2

	Module uart
	Data Types
	peripheral()
	uart_opts()

	Function Index
	Function Details
	close/1
	open/1
	open/2
	read/1
	read/2
	write/2

	11.1.3 alisp
	The alisp library
	Modules

	Module alisp
	Function Index
	Function Details
	booleanize/1
	eval/1
	run/1

	Module alisp_stdlib
	Function Index
	Function Details
	‘*’/1
	‘+’/1
	‘-‘/1
	‘=’/1
	‘remove-if’/1
	‘remove-if-not’/1
	append/1
	binaryp/1
	car/1
	cdr/1
	cons/1
	floatp/1
	identity/1
	integerp/1
	last/1
	list/1
	listp/1
	mapcar/1
	numberp/1
	pidp/1
	print/1
	refp/1
	tuple/1
	tuplep/1

	Module arepl
	Function Index
	Function Details
	start/0

	Module sexp_lexer
	Function Index
	Function Details
	string/1

	Module sexp_parser
	Function Index
	Function Details
	parse/1

	Module sexp_serializer
	Function Index
	Function Details
	serialize/1

	11.1.4 etest
	The etest library
	Modules

	Module etest
	Function Index
	Function Details
	assert_equals/2
	assert_exception/1
	assert_exception/2
	assert_exception/3
	assert_match/2
	assert_true/1
	flush_msg_queue/0
	test/1

	11.2 AtomVM ‘C’ APIs

	12 Contributing
	12.1 Git Recommended Practices
	12.2 Coding Style
	12.2.1 Copyright Headers
	12.2.2 C Code
	Indentation
	Naming Conventions
	Other Coding Conventions
	Documentation

	12.2.3 Erlang Code
	12.2.4 Elixir Code

	13 Changelog
	13.1 [0.6.6] - Unreleased
	13.1.1 Added
	13.1.2 Fixed
	13.1.3 Changed

	13.2 [0.6.5] - 2024-10-15
	13.2.1 Added
	13.2.2 Changed
	13.2.3 Fixed

	13.3 [0.6.4] - 2024-08-18
	13.3.1 Added

	13.4 [0.6.3] - 2024-07-20
	13.4.1 Added
	13.4.2 Changed
	13.4.3 Fixed

	13.5 [0.6.2] - 25-05-2024
	13.5.1 Added
	13.5.2 Fixed
	13.5.3 Changed

	13.6 [0.6.1] - 2024-04-17
	13.6.1 Added
	13.6.2 Fixed

	13.7 [0.6.0] - 2024-03-05
	13.7.1 Fixed

	13.8 [0.6.0-rc.0] - 2024-03-03
	13.8.1 Added
	13.8.2 Fixed

	13.9 [0.6.0-beta.1] - 2024-02-28
	13.9.1 Added
	13.9.2 Fixed
	13.9.3 Changed

	13.10 [0.6.0-beta.0] - 2024-02-08
	13.10.1 Added
	13.10.2 Changed
	13.10.3 Fixed

	13.11 [0.6.0-alpha.2] - 2023-12-10
	13.11.1 Fixed
	13.11.2 Changed
	13.11.3 Added
	13.11.4 Removed

	13.12 [0.6.0-alpha.1] - 2023-10-09
	13.12.1 Added
	13.12.2 Changed
	13.12.3 Fixed

	13.13 [0.6.0-alpha.0] - 2023-08-13
	13.13.1 Added
	13.13.2 Fixed
	13.13.3 Breaking Changes
	13.13.4 Removed

	13.14 [0.5.1] - Unreleased
	13.14.1 Added
	13.14.2 Fixed

	13.15 [0.5.0] - 2022-03-22

	14 Contributor Covenant Code of Conduct
	14.1 Our Pledge
	14.2 Our Standards
	14.3 Enforcement Responsibilities
	14.4 Scope
	14.5 Enforcement
	14.6 Enforcement Guidelines
	14.6.1 1. Correction
	14.6.2 2. Warning
	14.6.3 3. Temporary Ban
	14.6.4 4. Permanent Ban

	14.7 Attribution

	15 Security Policy
	15.1 Supported Versions
	15.2 Reporting a Vulnerability

	16 AtomVM Update Instructions
	16.1 v0.6.4 -> v0.6.5
	16.2 v0.6.0-beta.1 -> v0.6.0-rc.0
	16.3 v0.6.0-alpha.2 -> v0.6.0-beta.0
	16.4 v0.6.0-alpha.0 -> v0.6.0-alpha.1

